Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At the center of the sun, the temperature is approximately 107K and the concentration of electrons is approximately 1032 per cubic meter. Would it be (approximately) valid to treat these electrons as a "classical" ideal gas (using Boltzmann statistics), or as a degenerate Fermi gas (with T0 ), or neither?

Short Answer

Expert verified

The gas cannot be treated as degenerate at T=0, and ordinary classical ideal gas at TTF because the temperature T is not much less than or greater than TF.

Step by step solution

01

Step 1. Given Information 

We are given that the temperature at the centre of the sun is approximately 107Kand the concentration of electrons is approximately 1032per cubic meter.

02

Step 2. Finding fermi temperature

Calculating the fermi temperature for the electron gas at the center of the Sun to check if the given statement is correct or not.

The Fermi temperature for the electron gas at the center of the Sun is given by,

TF=EFk

The fermi energy of electrons can be expressed in terms of free electron density as follows,

εF=h28me3NπV23

03

Step 3. Finding fermi temperature

Putting the values, we get

TF=1kh28me3NπV23TF=6.63×10-34J·s21.38×10-23J/K(8)9.1×10-31kg31032m-3π23=9.1×106K

The Fermi temperature is of the same order of magnitude as the temperature of the Sun 107K.

04

Step 4. About the Statement

Here, the temperature T is not much less than or greater than TF. Hence, the approximation is not very accurate.

Due to this reason, the gas cannot be treated as degenerate at T=0, and ordinary classical ideal gas at TTF.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a system consisting of a single impurity atom/ion in a semiconductor. Suppose that the impurity atom has one "extra" electron compared to the neighboring atoms, as would a phosphorus atom occupying a lattice site in a silicon crystal. The extra electron is then easily removed, leaving behind a positively charged ion. The ionized electron is called a conduction electron because it is free to move through the material; the impurity atom is called a donor, because it can "donate" a conduction electron. This system is analogous to the hydrogen atom considered in the previous two problems except that the ionization energy is much less, mainly due to the screening of the ionic charge by the dielectric behavior of the medium.

(a) Write down a formula for the probability of a single donor atom being ionized. Do not neglect the fact that the electron, if present, can have two independent spin states. Express your formula in terms of the temperature, the ionization energy I, and the chemical potential of the "gas" of ionized electrons.

(b) Assuming that the conduction electrons behave like an ordinary ideal gas (with two spin states per particle), write their chemical potential in terms of the number of conduction electrons per unit volume,NcV.

(c) Now assume that every conduction electron comes from an ionized donor atom. In this case the number of conduction electrons is equal to the number of donors that are ionized. Use this condition to derive a quadratic equation for Ncin terms of the number of donor atoms Nd, eliminatingµ. Solve for Ncusing the quadratic formula. (Hint: It's helpful to introduce some abbreviations for dimensionless quantities. Tryx=NcNd,t=kTland so on.)

(d) For phosphorus in silicon, the ionization energy is localid="1650039340485" 0.044eV. Suppose that there are 1017patoms per cubic centimeter. Using these numbers, calculate and plot the fraction of ionized donors as a function of temperature. Discuss the results.

Figure 7.37 shows the heat capacity of a Bose gas as a function of temperature. In this problem you will calculate the shape of this unusual graph.

(a) Write down an expression for the total energy of a gas of Nbosons confined to a volume V, in terms of an integral (analogous to equation 7.122).

(b) For T<Tcyou can set μ=0. Evaluate the integral numerically in this case, then differentiate the result with respect to Tto obtain the heat capacity. Compare to Figure 7.37.

(c) Explain why the heat capacity must approach 32Nkin the high- Tlimit.

(d) For T>Tcyou can evaluate the integral using the values of μcalculated in Problem 7.69. Do this to obtain the energy as a function of temperature, then numerically differentiate the result to obtain the heat capacity. Plot the heat capacity, and check that your graph agrees with Figure 7.37.

Figure 7.37. Heat capacity of an ideal Bose gas in a three-dimensional box.

The tungsten filament of an incandescent light bulb has a temperature of approximately 3000K. The emissivity of tungsten is approximately 13, and you may assume that it is independent of wavelength.

(a) If the bulb gives off a total of 100watts, what is the surface area of its filament in square millimetres?

(b) At what value of the photon energy does the peak in the bulb's spectrum occur? What is the wavelength corresponding to this photon energy?

(c) Sketch (or use a computer to plot) the spectrum of light given off by the filament. Indicate the region on the graph that corresponds to visible wavelengths, between400and700nm.

(d) Calculate the fraction of the bulb's energy that comes out as visible light. (Do the integral numerically on a calculator or computer.) Check your result qualitatively from the graph of part (c).

( e) To increase the efficiency of an incandescent bulb, would you want to raise or lower the temperature? (Some incandescent bulbs do attain slightly higher efficiency by using a different temperature.)

(f) Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695K.

The planet Venus is different from the earth in several respects. First, it is only 70% as far from the sun. Second, its thick clouds reflect 77%of all incident sunlight. Finally, its atmosphere is much more opaque to infrared light.

(a) Calculate the solar constant at the location of Venus, and estimate what the average surface temperature of Venus would be if it had no atmosphere and did not reflect any sunlight.

(b) Estimate the surface temperature again, taking the reflectivity of the clouds into account.

(c) The opaqueness of Venus's atmosphere at infrared wavelengths is roughly 70times that of earth's atmosphere. You can therefore model the atmosphere of Venus as 70successive "blankets" of the type considered in the text, with each blanket at a different equilibrium temperature. Use this model to estimate the surface temperature of Venus. (Hint: The temperature of the top layer is what you found in part (b). The next layer down is warmer by a factor of 21/4. The next layer down is warmer by a smaller factor. Keep working your way down until you see the pattern.)

A black hole is a blackbody if ever there was one, so it should emit blackbody radiation, called Hawking radiation. A black hole of mass M has a total energy of Mc2, a surface area of 16πG2M2/c4, and a temperature ofhc3/16π2kGM(as shown in Problem 3.7).

(a) Estimate the typical wavelength of the Hawking radiation emitted by a one-solar-mass (2 x 1030 kg) black hole. Compare your answer to the size of the black hole.

(b) Calculate the total power radiated by a one-solar-mass black hole.

(c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say it "evaporates." Derive a differential equation for the mass as a function of time, and solve this equation to obtain an expression for the lifetime of a black hole in terms of its initial mass.

(d) Calculate the lifetime of a one-solar-mass black hole, and compare to the estimated age of the known universe (1010 years).

(e) Suppose that a black hole that was created early in the history of the universe finishes evaporating today. What was its initial mass? In what part of the electromagnetic spectrum would most of its radiation have been emitted?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free