Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a real hemoglobin molecule, the tendency of oxygen to bind to a heme site increases as the other three heme sites become occupied. To model this effect in a simple way, imagine that a hemoglobin molecule has just two sites, either or both of which can be occupied. This system has four possible states (with only oxygen present). Take the energy of the unoccupied state to be zero, the energies of the two singly occupied states to be -0.55eV, and the energy of the doubly occupied state to be -1.3eV(so the change in energy upon binding the second oxygen is -0.75eV). As in the previous problem, calculate and plot the fraction of occupied sites as a function of the effective partial pressure of oxygen. Compare to the graph from the previous problem (for independent sites). Can you think of why this behavior is preferable for the function of hemoglobin?

Short Answer

Expert verified

Occupancy rises gradually for smaller values of P. This shows that with cooperative binding, hemoglobin reacts with oxygen much fast in cells when P is small.

Step by step solution

01

Step 1. Formula Gibb's Factor

Gibb's Factor is given by formula:

Gibb'sFactor=e-(ε-nμ)kT

where, kis Boltzmann's constant, Tis temperature, μis chemical potential, and εis energy of state .

As, in hemoglobin molecule, oxygen can have four different states given by:

localid="1647144603783" εo=0eVε1=-0.55eV(twosinglyoccupied)ε2=-1.3eV

The average number of oxygen molecules is given by,

N=SN(S)=2e-(ε1-μ)kTZ+2e-(ε2-2μ)kTZ

02

Step 2. Formula occupancy

Occupancy of system is given by:

n=NZ=1Ze-(ε1-μ)kT+-(ε2-2μ)kT

Chemical Potential formula is :

μ=-kT×lnVZinNνQ

Substitute VN=kTPin above formula,

μ=-kT×lnkTZinPνQ

eμkT=PνQkTZin

Gibb's Factor can be written as:

e-(ε1-μ)kT=e-ε1kT×PνQkTZin=PνQkTZineε1kT=PPo

03

Step 3. Calculation

Oxygen molecule quantum volume is:

νQ=h2πmkT3

Substitute the values of the variables in above formula,

νQ=6.63×10-34J·s2π(32×1.66×10-27kg)(1.38×10-23J/K)(310K)3=5.3×10-33m3

In equation, n=1Ze-(ε1-μ)kT+-(ε2-2μ)kT

Substitute eεKT=1790 and Po=2.03barat room temperature,

n=P2.03+1790P2.0321+P2.03+1790P2.032

Occupancy in this model is nearly 100%near lungs given P=0.20bar

04

Step 4. Table and Graph

The table is created between Pressure Pand fraction of occupied sites:

P
n
0.01
0.0461
0.02
0.1554
0.03
0.2899
0.04
0.4204
0.05
0.5332
0.06
0.6257
0.07
0.7001
0.08
0.7598
0.09
0.8080

The graph between fraction of occupied sites and oxygen partial pressure is created as,

We see that the occupancy rises gradually for smaller values of P. This shows that with cooperative binding, hemoglobin reacts with oxygen much fast in cells when Pis small.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Repeat the previous problem, taking into account the two independent spin states of the electron. Now the system has two "occupied" states, one with the electron in each spin configuration. However, the chemical potential of the electron gas is also slightly different. Show that the ratio of probabilities is the same as before: The spin degeneracy cancels out of the saha equation.

A ferromagnet is a material (like iron) that magnetizes spontaneously, even in the absence of an externally applied magnetic field. This happens because each elementary dipole has a strong tendency to align parallel to its neighbors. At t=0the magnetization of a ferromagnet has the maximum possible value, with all dipoles perfectly lined up; if there are Natoms, the total magnetization is typically~2μeN, where µa is the Bohr magneton. At somewhat higher temperatures, the excitations take the form of spin waves, which can be visualized classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: Each wave mode can have only integer multiples of a basic energy unit. In analogy with phonons, we think of the energy units as particles, called magnons. Each magnon reduces the total spin of the system by one unit of h21rand therefore reduces the magnetization by ~2μe. However, whereas the frequency of a sound wave is inversely proportional to its wavelength, the frequency of a spin-wave is proportional to the square of 1λ.. (in the limit of long wavelengths). Therefore, since=hfand p=hλ.. for any "particle," the energy of a magnon is proportional

In the ground state of a ferromagnet, all the elementary dipoles point in the same direction. The lowest-energy excitations above the ground state are spin waves, in which the dipoles precess in a conical motion. A long-wavelength spin wave carries very little energy because the difference in direction between neighboring dipoles is very small.

to the square of its momentum. In analogy with the energy-momentum relation for an ordinary nonrelativistic particle, we can write =p22pm*, wherem* is a constant related to the spin-spin interaction energy and the atomic spacing. For iron, m* turns out to equal 1.24×1029kg, about14times the mass of an electron. Another difference between magnons and phonons is that each magnon ( or spin-wave mode) has only one possible polarization.

(a) Show that at low temperatures, the number of magnons per unit volume in a three-dimensional ferromagnet is given by

NmV=2π2m×kTh2320xex-1dx.

Evaluate the integral numerically.

(b) Use the result of part (a) to find an expression for the fractional reduction in magnetization, (M(O)-M(T))/M(O).Write your answer in the form (T/To)32, and estimate the constantT0for iron.

(c) Calculate the heat capacity due to magnetic excitations in a ferromagnet at low temperature. You should find Cv/Nk=(T/Ti)32, where Tidiffers from To only by a numerical constant. EstimateTifor iron, and compare the magnon and phonon contributions to the heat capacity. (The Debye temperature of iron is 470k.)

(d) Consider a two-dimensional array of magnetic dipoles at low temperature. Assume that each elementary dipole can still point in any (threedimensional) direction, so spin waves are still possible. Show that the integral for the total number of magnons diverge in this case. (This result is an indication that there can be no spontaneous magnetization in such a two-dimensional system. However, in Section 8.2we will consider a different two-dimensional model in which magnetization does occur.)

For a system obeying Boltzmann statistics, we know what μis from Chapter 6. Suppose, though, that you knew the distribution function (equation 7.31) but didn't know μ. You could still determine μ by requiring that the total number of particles, summed over all single-particle states, equal N. Carry out this calculation, to rederive the formula μ=-kTlnZ1/N. (This is normally how μ is determined in quantum statistics, although the math is usually more difficult.)

Problem 7.69. If you have a computer system that can do numerical integrals, it's not particularly difficult to evaluate μforT>Tc.

(a) As usual when solving a problem on a computer, it's best to start by putting everything in terms of dimensionless variables. So define t=T/Tc,c=μ/kTc,andx=ϵ/kTc. Express the integral that defines , equation 7.22, in terms of these variables. You should obtain the equation

2.315=0xdxe(x-c)/t-1

(b) According to Figure

the correct value of cwhen T=2Tcis approximately -0.8. Plug in these values and check that the equation above is approximately satisfied.

(c) Now vary μ, holding Tfixed, to find the precise value of μfor T=2Tc. Repeat for values of T/Tcranging from 1.2up to 3.0, in increments of 0.2. Plot a graph of μas a function of temperature.

A white dwarf star (see Figure 7.12) is essentially a degenerate electron gas, with a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that holds the star together. In this problem you will derive a relation between the mass and the radius of a white dwarf star, modeling the star as a uniform-density sphere. White dwarf stars tend to be extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to set T=0.

(a) Use dimensional analysis to argue that the gravitational potential energy of a uniform-density sphere (mass M, radius R) must equal

Ugrav=-(constant)GM2R

where (constant) is some numerical constant. Be sure to explain the minus sign. The constant turns out to equal 3/5; you can derive it by calculating the (negative) work needed to assemble the sphere, shell by shell, from the inside out.

(b) Assuming that the star contains one proton and one neutron for each electron, and that the electrons are nonrelativistic, show that the total (kinetic) energy of the degenerate electrons equals

Ukinetic=(0.0086)h2M53memp53R2

Figure 7.12. The double star system Sirius A and B. Sirius A (greatly overexposed in the photo) is the brightest star in our night sky. Its companion, Sirius B, is hotter but very faint, indicating that it must be extremely small-a white dwarf. From the orbital motion of the pair we know that Sirius B has about the same mass as our sun. (UCO /Lick Observatory photo.)

( c) The equilibrium radius of the white dwarf is that which minimizes the total energy Ugravity+Ukinetic· Sketch the total energy as a function of R, and find a formula for the equilibrium radius in terms of the mass. As the mass increases, does the radius increase or decrease? Does this make sense?

( d) Evaluate the equilibrium radius for M=2×1030kg, the mass of the sun. Also evaluate the density. How does the density compare to that of water?

( e) Calculate the Fermi energy and the Fermi temperature, for the case considered in part (d). Discuss whether the approximation T = 0 is valid.

(f) Suppose instead that the electrons in the white dwarf star are highly relativistic. Using the result of the previous problem, show that the total kinetic energy of the electrons is now proportional to 1 / R instead of 1R2• Argue that there is no stable equilibrium radius for such a star.

(g) The transition from the nonrelativistic regime to the ultra relativistic regime occurs approximately where the average kinetic energy of an electron is equal to its rest energy, mc2Is the nonrelativistic approximation valid for a one-solar-mass white dwarf? Above what mass would you expect a white dwarf to become relativistic and hence unstable?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free