Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Each atom in a chunk of copper contributes one conduction electron. Look up the density and atomic mass of copper, and calculate the Fermi energy, the Fermi temperature, the degeneracy pressure, and the contribution of the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low to treat this system as a degenerate electron gas?

Short Answer

Expert verified

The Fermi energy is 7.04eV, Fermi temperature 81884K, degeneracy pressure is 3.74Pascal.and the bulk modulus is 6.3×105atm.

The found temperature is to large from the room temperature.

Step by step solution

01

Given information

We have given,

Every atom in a chunk of copper is contributes one conduction electron.

We have to find the Fermi energy, Fermi temperature and pressure.

02

Simplify

Formula of the Fermi energy is given by,

εf=h28m3NπV23

Where, V is volume of the chunk, which is given by,

V=Mρ

Where we know that the one mole of mass of copper is 63.5gand density of the copper is 8.93g/cm3.

Then volume will be,

V=63.5g8.93g/cm3V=7.1cm3V=7.1×10-6m3

Since it is given that the every atom is give the one electron. then, number of electron for per unit volume will be equal to number of atom in one mole.

Then,

N=6.022×1023electron/mole

Mass of the electron =9.1×10-31kg

Then, the Fermi energy will be,

εf=h28m3NπV23εf=(6.63×10-34J.s)28(9.1×10-31kg)3(6.022×1023π×7.1×10-6εf=7.04eV

Then, the Fermi temperature will be found out by,

εf=KBT

Where KBis Boltzmann's constant.

then,

localid="1649951480186" εf=(1.38×10-23J/K)TT=1.13×10-18J1.38×10-23J/KT=81884K

03

simplify

The degeneracy pressure can be found as

P=2N5VεfP=2×6.022×10235×7.1×10-6m3(1.13×10-18J)P=3.74pascal

The contribution of the degeneracy pressure to the bulk modulus is given by,

B=2N3VεfB=2×6.022×10233×7.1×10-6m3×1.13×10-18JB=6.3×105atm

The found temperature is very large than the room temperature that is why it is sufficiently low to treat this system as a degenerate electron gas.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Change variables in equation 7.83 to λ=hc/ϵ and thus derive a formula for the photon spectrum as a function of wavelength. Plot this spectrum, and find a numerical formula for the wavelength where the spectrum peaks, in terms of hc/kT. Explain why the peak does not occur at hc/(2.82kT).

When the attractive forces of the ions in a crystal are taken into account, the allowed electron energies are no longer given by the simple formula 7.36; instead, the allowed energies are grouped into bands, separated by gaps where there are no allowed energies. In a conductor the Fermi energy lies within one of the bands; in this section we have treated the electrons in this band as "free" particles confined to a fixed volume. In an insulator, on the other hand, the Fermi energy lies within a gap, so that at T = 0 the band below the gap is completely occupied while the band above the gap is unoccupied. Because there are no empty states close in energy to those that are occupied, the electrons are "stuck in place" and the material does not conduct electricity. A semiconductor is an insulator in which the gap is narrow enough for a few electrons to jump across it at room temperature. Figure 7 .17 shows the density of states in the vicinity of the Fermi energy for an idealized semiconductor, and defines some terminology and notation to be used in this problem.

(a) As a first approximation, let us model the density of states near the bottom of the conduction band using the same function as for a free Fermi gas, with an appropriate zero-point: g(ϵ)=g0ϵ-ϵc, where go is the same constant as in equation 7.51. Let us also model the density of states near the top

Figure 7.17. The periodic potential of a crystal lattice results in a densityof-states function consisting of "bands" (with many states) and "gaps" (with no states). For an insulator or a semiconductor, the Fermi energy lies in the middle of a gap so that at T = 0, the "valence band" is completely full while the-"conduction band" is completely empty. of the valence band as a mirror image of this function. Explain why, in this approximation, the chemical potential must always lie precisely in the middle of the gap, regardless of temperature.

(b) Normally the width of the gap is much greater than kT. Working in this limit, derive an expression for the number of conduction electrons per unit volume, in terms of the temperature and the width of the gap.

(c) For silicon near room temperature, the gap between the valence and conduction bands is approximately 1.11 eV. Roughly how many conduction electrons are there in a cubic centimeter of silicon at room temperature? How does this compare to the number of conduction electrons in a similar amount of copper?

( d) Explain why a semiconductor conducts electricity much better at higher temperatures. Back up your explanation with some numbers. (Ordinary conductors like copper, on the other hand, conduct better at low temperatures.) (e) Very roughly, how wide would the gap between the valence and conduction bands have to be in order to consider a material an insulator rather than a semiconductor?

A ferromagnet is a material (like iron) that magnetizes spontaneously, even in the absence of an externally applied magnetic field. This happens because each elementary dipole has a strong tendency to align parallel to its neighbors. At t=0the magnetization of a ferromagnet has the maximum possible value, with all dipoles perfectly lined up; if there are Natoms, the total magnetization is typically~2μeN, where µa is the Bohr magneton. At somewhat higher temperatures, the excitations take the form of spin waves, which can be visualized classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: Each wave mode can have only integer multiples of a basic energy unit. In analogy with phonons, we think of the energy units as particles, called magnons. Each magnon reduces the total spin of the system by one unit of h21rand therefore reduces the magnetization by ~2μe. However, whereas the frequency of a sound wave is inversely proportional to its wavelength, the frequency of a spin-wave is proportional to the square of 1λ.. (in the limit of long wavelengths). Therefore, since=hfand p=hλ.. for any "particle," the energy of a magnon is proportional

In the ground state of a ferromagnet, all the elementary dipoles point in the same direction. The lowest-energy excitations above the ground state are spin waves, in which the dipoles precess in a conical motion. A long-wavelength spin wave carries very little energy because the difference in direction between neighboring dipoles is very small.

to the square of its momentum. In analogy with the energy-momentum relation for an ordinary nonrelativistic particle, we can write =p22pm*, wherem* is a constant related to the spin-spin interaction energy and the atomic spacing. For iron, m* turns out to equal 1.24×1029kg, about14times the mass of an electron. Another difference between magnons and phonons is that each magnon ( or spin-wave mode) has only one possible polarization.

(a) Show that at low temperatures, the number of magnons per unit volume in a three-dimensional ferromagnet is given by

NmV=2π2m×kTh2320xex-1dx.

Evaluate the integral numerically.

(b) Use the result of part (a) to find an expression for the fractional reduction in magnetization, (M(O)-M(T))/M(O).Write your answer in the form (T/To)32, and estimate the constantT0for iron.

(c) Calculate the heat capacity due to magnetic excitations in a ferromagnet at low temperature. You should find Cv/Nk=(T/Ti)32, where Tidiffers from To only by a numerical constant. EstimateTifor iron, and compare the magnon and phonon contributions to the heat capacity. (The Debye temperature of iron is 470k.)

(d) Consider a two-dimensional array of magnetic dipoles at low temperature. Assume that each elementary dipole can still point in any (threedimensional) direction, so spin waves are still possible. Show that the integral for the total number of magnons diverge in this case. (This result is an indication that there can be no spontaneous magnetization in such a two-dimensional system. However, in Section 8.2we will consider a different two-dimensional model in which magnetization does occur.)

The previous two problems dealt with pure semiconductors, also called intrinsic semiconductors. Useful semiconductor devices are instead made from doped semiconductors, which contain substantial numbers of impurity atoms. One example of a doped semiconductor was treated in Problem 7.5. Let us now consider that system again. (Note that in Problem 7.5 we measured all energies relative to the bottom of the conduction band, Ee. We also neglected the distinction between g0and g0c; this simplification happens to be ok for conduction electrons in silicon.)

(a) Calculate and plot the chemical potential as afunction of temperature, for silicon doped with 1017phosphorus atoms per cm3(as in Problem 7.5). Continue to assume that the conduction electrons can be treated as an ordinary ideal gas.

(b) Discuss whether it is legitimate to assume for this system that the conduction electrons can be treated asan ordinary ideal gas, as opposed to a Fermi gas. Give some numerical examples.

(c)Estimate the temperature at which the number of valence electrons excitedto the conduction band would become comparable to the number ofconduction electrons from donor impurities. Which source of conductionelectrons is more important at room temperature?

At the surface of the sun, the temperature is approximately 5800 K.

(a) How much energy is contained in the electromagnetic radiation filling a cubic meter of space at the sun's surface?

(b) Sketch the spectrum of this radiation as a function of photon energy. Mark the region of the spectrum that corresponds to visible wavelengths, between 400 nm and 700 nm.

(c) What fraction of the energy is in the visible portion of the spectrum? (Hint: Do the integral numerically.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free