Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Imagine that there exists a third type of particle, which can share a single-particle state with one other particle of the same type but no more. Thus the number of these particles in any state can be 0,1 or 2 . Derive the distribution function for the average occupancy of a state by particles of this type, and plot the occupancy as a function of the state's energy, for several different temperatures.

Short Answer

Expert verified

The distribution function for the average occupancy of a state by given types of particles is derived.

The graph is as follows,

Step by step solution

01

Step 1. Given Information 

We are given a particle that can share a single-particle state with one other particle of the same type but no more and the number of these particles in any state can be 0,1or 2.

02

Step 2. Grand partition function

The grand partition function or Gibbs sum is,

Z=ne-n(ϵ-μ)kT

According to the given problem, the number of particles of third type in any state can be 0,1or 2. That is n can be 0,1or2.

Z=n=02exp-n(ε-μ)kTZ=exp(0)+exp-(ε-μ)kT+exp-2(ε-μ)kTZ=1+exp-(ε-μ)kT+exp-2(ε-μ)kT

03

Step 3. Probability of n- particals

Let x=exp-(ε-μ)kT,

Z=1+x+x2

The probability of state being occupied by n-particles is,

P(n)=1Zexp-n(ε-μ)kT=1ZxnP(n)=xn1+x+x2

04

Step 4. Average occupancy of state by particles 

The average occupancy of state by particles of this type is,

n¯=n=02nP(n)=0·P(0)+1·P(1)+2·P(2)=1·x11+x+x2+2·x21+x+x2n¯=x+2x21+x+x2

So, the distribution function for the number of these particles in any state can be 0,1or 2is,

n=x+2x21+x+x2x=exp-(ε-μ)kT

05

Step 5. Graphing the occupancy as a function of the state's energy 

The graph is as follows,

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a system consisting of a single hydrogen atom/ion, which has two possible states: unoccupied (i.e., no electron present) and occupied (i.e., one electron present, in the ground state). Calculate the ratio of the probabilities of these two states, to obtain the Saha equation, already derived in Section 5.6 Treat the electrons as a monotonic ideal gas, for the purpose of determining μ. Neglect the fact that an electron has two independent spin states.

In this problem you will model helium-3 as a non-interacting Fermi gas. Although He3liquefies at low temperatures, the liquid has an unusually low density and behaves in many ways like a gas because the forces between the atoms are so weak. Helium-3 atoms are spin-1/2 fermions, because of the unpaired neutron in the nucleus.

(a) Pretending that liquid 3He is a non-interacting Fermi gas, calculate the Fermi energy and the Fermi temperature. The molar volume (at low pressures) is 37cm3

(b)Calculate the heat capacity for T<<Tf, and compare to the experimental result CV=(2.8K-1)NkT(in the low-temperature limit). (Don't expect perfect agreement.)

(c)The entropy of solid H3ebelow 1 K is almost entirely due to its multiplicity of nuclear spin alignments. Sketch a graph S vs. T for liquid and solid H3eat low temperature, and estimate the temperature at which the liquid and solid have the same entropy. Discuss the shape of the solid-liquid phase boundary shown in Figure 5.13.

Consider a system consisting of a single impurity atom/ion in a semiconductor. Suppose that the impurity atom has one "extra" electron compared to the neighboring atoms, as would a phosphorus atom occupying a lattice site in a silicon crystal. The extra electron is then easily removed, leaving behind a positively charged ion. The ionized electron is called a conduction electron, because it is free to move through the material; the impurity atom is called a donor, because it can "donate" a conduction electron. This system is analogous to the hydrogen atom considered in the previous two problems except that the ionization energy is much less, mainly due to the screening of the ionic charge by the dielectric behavior of the medium.

Consider an isolated system of Nidentical fermions, inside a container where the allowed energy levels are nondegenerate and evenly spaced.* For instance, the fermions could be trapped in a one-dimensional harmonic oscillator potential. For simplicity, neglect the fact that fermions can have multiple spin orientations (or assume that they are all forced to have the same spin orientation). Then each energy level is either occupied or unoccupied, and any allowed system state can be represented by a column of dots, with a filled dot representing an occupied level and a hollow dot representing an unoccupied level. The lowest-energy system state has all levels below a certain point occupied, and all levels above that point unoccupied. Let ηbe the spacing between energy levels, and let be the number of energy units (each of size 11) in excess of the ground-state energy. Assume thatq<N. Figure 7 .8 shows all system states up to q=3.

(a) Draw dot diagrams, as in the figure, for all allowed system states with q=4,q=5,andq=6. (b) According to the fundamental assumption, all allowed system states with a given value of q are equally probable. Compute the probability of each energy level being occupied, for q=6. Draw a graph of this probability as a function of the energy of the level. ( c) In the thermodynamic limit where qis large, the probability of a level being occupied should be given by the Fermi-Dirac distribution. Even though 6 is not a large number, estimate the values of μand T that you would have to plug into the Fermi-Dirac distribution to best fit the graph you drew in part (b).

A representation of the system states of a fermionic sytern with evenly spaced, nondegen erate energy levels. A filled dot rep- resents an occupied single-particle state, while a hollow dot represents an unoccupied single-particle state . {d) Calculate the entropy of this system for each value of q from 0to6, and draw a graph of entropy vs. energy. Make a rough estimate of the slope of this graph near q=6, to obtain another estimate of the temperature of this system at that point. Check that it is in rough agreement with your answer to part ( c).

A ferromagnet is a material (like iron) that magnetizes spontaneously, even in the absence of an externally applied magnetic field. This happens because each elementary dipole has a strong tendency to align parallel to its neighbors. At t=0the magnetization of a ferromagnet has the maximum possible value, with all dipoles perfectly lined up; if there are Natoms, the total magnetization is typically~2μeN, where µa is the Bohr magneton. At somewhat higher temperatures, the excitations take the form of spin waves, which can be visualized classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: Each wave mode can have only integer multiples of a basic energy unit. In analogy with phonons, we think of the energy units as particles, called magnons. Each magnon reduces the total spin of the system by one unit of h21rand therefore reduces the magnetization by ~2μe. However, whereas the frequency of a sound wave is inversely proportional to its wavelength, the frequency of a spin-wave is proportional to the square of 1λ.. (in the limit of long wavelengths). Therefore, since=hfand p=hλ.. for any "particle," the energy of a magnon is proportional

In the ground state of a ferromagnet, all the elementary dipoles point in the same direction. The lowest-energy excitations above the ground state are spin waves, in which the dipoles precess in a conical motion. A long-wavelength spin wave carries very little energy because the difference in direction between neighboring dipoles is very small.

to the square of its momentum. In analogy with the energy-momentum relation for an ordinary nonrelativistic particle, we can write =p22pm*, wherem* is a constant related to the spin-spin interaction energy and the atomic spacing. For iron, m* turns out to equal 1.24×1029kg, about14times the mass of an electron. Another difference between magnons and phonons is that each magnon ( or spin-wave mode) has only one possible polarization.

(a) Show that at low temperatures, the number of magnons per unit volume in a three-dimensional ferromagnet is given by

NmV=2π2m×kTh2320xex-1dx.

Evaluate the integral numerically.

(b) Use the result of part (a) to find an expression for the fractional reduction in magnetization, (M(O)-M(T))/M(O).Write your answer in the form (T/To)32, and estimate the constantT0for iron.

(c) Calculate the heat capacity due to magnetic excitations in a ferromagnet at low temperature. You should find Cv/Nk=(T/Ti)32, where Tidiffers from To only by a numerical constant. EstimateTifor iron, and compare the magnon and phonon contributions to the heat capacity. (The Debye temperature of iron is 470k.)

(d) Consider a two-dimensional array of magnetic dipoles at low temperature. Assume that each elementary dipole can still point in any (threedimensional) direction, so spin waves are still possible. Show that the integral for the total number of magnons diverge in this case. (This result is an indication that there can be no spontaneous magnetization in such a two-dimensional system. However, in Section 8.2we will consider a different two-dimensional model in which magnetization does occur.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free