Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For a system obeying Boltzmann statistics, we know what μis from Chapter 6. Suppose, though, that you knew the distribution function (equation 7.31) but didn't know μ. You could still determine μ by requiring that the total number of particles, summed over all single-particle states, equal N. Carry out this calculation, to rederive the formula μ=-kTlnZ1/N. (This is normally how μ is determined in quantum statistics, although the math is usually more difficult.)

Short Answer

Expert verified

The formulaμ=-kTlogeZ1Nis derived.

Step by step solution

01

Step 1. Given Information 

We are given a formula,

μ=-kTlnZ1/N

02

Step 2. Deriving the formula

According to Boltzmann statistics, the average number of particles in the single state is determined by Boltzmann distribution function,

n¯Boltzmann=e-(ε-μ)kT

N is the total number of particles, summed over all single-particle states,

N=sexp-(ε(s)-μ)kT=sexpμkTexp-ε(s)kT=expμkTsexp-ε(s)kT=expμkTZ1

As Z1=exp-ε(s)kT,

03

Step 3. Simplifying

Simplifying, we get

NZ1=μkTlogNZ1=μkT-logeZ1N=μkTμ=-kTlogeZ1N

Hence, the formula is derived.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At the surface of the sun, the temperature is approximately 5800 K.

(a) How much energy is contained in the electromagnetic radiation filling a cubic meter of space at the sun's surface?

(b) Sketch the spectrum of this radiation as a function of photon energy. Mark the region of the spectrum that corresponds to visible wavelengths, between 400 nm and 700 nm.

(c) What fraction of the energy is in the visible portion of the spectrum? (Hint: Do the integral numerically.)

Sometimes it is useful to know the free energy of a photon gas.

(a) Calculate the (Helmholtz) free energy directly from the definition

(Express the answer in terms of T' and V.)

(b) Check the formula S=-(F/T)Vfor this system.

(c) Differentiate F with respect to V to obtain the pressure of a photon gas. Check that your result agrees with that of the previous problem.

(d) A more interesting way to calculate F is to apply the formula F=-kTlnZ separately to each mode (that is, each effective oscillator), then sum over all modes. Carry out this calculation, to obtain

F=8πV(kT)4(hc)30x2ln1-e-xdx

Integrate by parts, and check that your answer agrees with part (a).

Sketch the heat capacity of copper as a function of temperature from 0to5K, showing the contributions of lattice vibrations and conduction electrons separately. At what temperature are these two contributions equal?

Consider a system of five particles, inside a container where the allowed energy levels are nondegenerate and evenly spaced. For instance, the particles could be trapped in a one-dimensional harmonic oscillator potential. In this problem you will consider the allowed states for this system, depending on whether the particles are identical fermions, identical bosons, or distinguishable particles.

(a) Describe the ground state of this system, for each of these three cases.

(b) Suppose that the system has one unit of energy (above the ground state). Describe the allowed states of the system, for each of the three cases. How many possible system states are there in each case?

(c) Repeat part (b) for two units of energy and for three units of energy.

(d) Suppose that the temperature of this system is low, so that the total energy is low (though not necessarily zero). In what way will the behavior of the bosonic system differ from that of the system of distinguishable particles? Discuss.

Show that when a system is in thermal and diffusive equilibrium with a reservoir, the average number of particles in the system is

N=kTZZμ

where the partial derivative is taken at fixed temperature and volume. Show also that the mean square number of particles is

N2¯=(kT)2Z2Zμ2

Use these results to show that the standard deviation of Nis

σN=kTN/μ,

in analogy with Problem6.18Finally, apply this formula to an ideal gas, to obtain a simple expression forσNin terms ofN¯Discuss your result briefly.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free