Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the text I showed that for an Einstein solid with three oscillators and three units of energy, the chemical potential is μ=-ϵ(where ϵis the size of an energy unit and we treat each oscillator as a "particle"). Suppose instead that the solid has three oscillators and four units of energy. How does the chemical potential then compare to -ϵ ? (Don't try to get an actual value for the chemical potential; just explain whether it is more or less than -ϵ.)

Short Answer

Expert verified

μ<-

Step by step solution

01

Explanation of Solution

Given:

For N=3and q=3the chemical potential is μ=-

02

Calculation

The chemical potential formula is

μ=ΔUΔNS

The entropy for N=3and q=3is

S=klnΩ

S=klnN+q-1|q-1|q3+3-1

S=kln|3-1|35¯

S=kln|2|3|2||2|

S=kln(10)

The entropy must be constant throughout.

The entropy for N=3and q=4is,

S=klnΩS=klnN+q1|q1|q3+31S=kln|31|35_S=kln|2|3|2||2|S=kln(10)

Thus, the entropy increases so to reduce the entropy to its original value.

03

Conclusion 

The chemical potential is lowered.

μ<-

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problem 2.32you computed the entropy of an ideal monatomic gas that lives in a two-dimensional universe. Take partial derivatives with respect to U,A, and N to determine the temperature, pressure, and chemical potential of this gas. (In two dimensions, pressure is defined as force per unit length.) Simplify your results as much as possible, and explain whether they make sense.

Use a computer to reproduce Table 3.2 and the associated graphs of entropy, temperature, heat capacity, and magnetization. (The graphs in this section are actually drawn from the analytic formulas derived below, so your numerical graphs won't be quite as smooth.)

Starting with the result of Problem 3.5, calculate the heat capacity of an Einstein solid in the low-temperature limit. Sketch the predicted heat capacity as a function of temperature.

In the experiment of Purcell and Pound, the maximum magnetic field strength was 0.63Tand the initial temperature was 300K. Pretending that the lithium nuclei have only two possible spin states (in fact they have four), calculate the magnetization per particle, M/N, for this system. Take the constant μto be 5×10-8eV/T. To detect such a tiny magnetization, the experimenters used resonant absorption and emission of radio waves. Calculate the energy that a radio wave photon should have, in order to flip a single nucleus from one magnetic state to the other. What is the wavelength of such a photon?

Fill in the missing algebraic steps to derive equations 3.30, 3.31, and 3.33.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free