Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the thermodynamic identity to derive the heat capacity formula

CV=TSTV

which is occasionally more convenient than the more familiar expression in terms of U. Then derive a similar formula for CP, by first writing dHin terms of dSand dP.

Short Answer

Expert verified

The heat capacity expression is same for both at constant pressure and volume.

Step by step solution

01

Explanation of Solution

Given:

The thermodynamic identity for infinitesimal process is:

Internal energy, dU=TdS-PdV

Enthalpy,dH=dU+PdV

02

Calculation

At constant volume , the heat capacity is

CV=UTV

CV=TdS-PdVTV

CV=TSTV

At constant pressure the heat capacity is,

CP=HTP

CP=dU+PdVTP

CP=TSTP

The heat capacity expression is same for both at constant pressure and volume.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In solid carbon monoxide, each CO molecule has two possible orientations: CO or OC. Assuming that these orientations are completely random (not quite true but close), calculate the residual entropy of a mole of carbon monoxide.

Suppose you have a mixture of gases (such as air, a mixture of nitrogen and oxygen). The mole fraction xiof any species iis defined as the fraction of all the molecules that belong to that species: xi=Ni/Ntotal. The partial pressure Piof species iis then defined as the corresponding fraction of the total pressure: Pi=xiP. Assuming that the mixture of gases is ideal, argue that the chemical potential μiof species i in this system is the same as if the other gases were not present, at a fixed partial pressure Pi.

In Problem 2.18 you showed that the multiplicity of an Einstein solid containing N oscillators and q energy units is approximately

Ω(N,q)q+Nqqq+NNN

(a) Starting with this formula, find an expression for the entropy of an Einstein solid as a function of N and q. Explain why the factors omitted from the formula have no effect on the entropy, when N and q are large.

(b) Use the result of part (a) to calculate the temperature of an Einstein solid as a function of its energy. (The energy is U=qϵ, where ϵis a constant.) Be sure to simplify your result as much as possible.

(c) Invert the relation you found in part (b) to find the energy as a function of temperature, then differentiate to find a formula for the heat capacity.

(d) Show that, in the limit T, the heat capacity is C=Nk. (Hint: When x is very small, ex1+x.) Is this the result you would expect? Explain.

(e) Make a graph (possibly using a computer) of the result of part (c). To avoid awkward numerical factors, plot C/Nkvs. the dimensionless variable t=kT/ϵ, for t in the range from 0 to about 2. Discuss your prediction for the heat capacity at low temperature, comparing to the data for lead, aluminum, and diamond shown in Figure 1.14. Estimate the value of ϵ, in electron-volts, for each of those real solids.

(f) Derive a more accurate approximation for the heat capacity at high temperatures, by keeping terms through x3 in the expansions of the exponentials and then carefully expanding the denominator and multiplying everything out. Throw away terms that will be smaller than(ϵ/kT)2 in the final answer. When the smoke clears, you should find C=Nk1-112(ϵ/kT)2.

Estimate the change in the entropy of the universe due to heat escaping from your home on a cold winter day.

A bit of computer memory is some physical object that can be in two different states, often interpreted as 0 and 1. A byte is eight bits, a kilobyte is 1024=210bytes, a megabyte is 1024 kilobytes, and a gigabyte is 1024 megabytes.

(a) Suppose that your computer erases or overwrites one gigabyte of memory, keeping no record of the information that was stored. Explain why this process must create a certain minimum amount of entropy, and calculate how much.

(b) If this entropy is dumped into an environment at room temperature, how much heat must come along with it? Is this amount of heat significant?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free