Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the entropy of a two-state paramagnet, expressed as a function of temperature, is S=Nk[ln(2coshx)xtanhx], where x=μB/kT. Check that this formula has the expected behavior as T0and T.

Short Answer

Expert verified

The entropy of the two-state paramagnet as the function of temperature is expressed asS=Nk[ln(2coshx)xtanhx],where x=μB/kT.

The entropy at temperature T0and Tshows expected behavior with consistency with the third law of thermodynamics.

Step by step solution

01

Given Information

The given substance is a two-state paramagnet of which the graph of entropy as a function of temperature is to be sketched.

We have to show that:

S=Nk[ln(2coshx)xtanhx]

Where,

x=μB/kT

02

Calculation

The magnetization for two-state paramagnet is given as:

M=μNtanh(μBkT)

Also, magnetization is given as:

M=μ(NN)

On comparing both the above equations, we get,

Ntanh(μBkT)=(NN)tanh(μBkT)=2NNNtanh(μBkT)=2NN1tanh(μBkT)=2n1n=12{1+tanh(x)}

Where,

x=μBkT

The entropy of a two-state paramagnet is given as:

S=k[NlnNNlnNNlnN]

On solving the above equation,

S=kNlnN-NlnN-NlnNSk=NlnN-NNNlnNNN-N-NNNlnN-NNNSNk=lnN-NNlnNNN-1-NNlnN1-NNSNk=lnN-nln(nN)-(1-n)lnN(1-n)SNk=lnN-nlnn-nlnN-(1-n)lnN-(1-n)ln(1-n)SNk=(1-n)lnN-nlnn-(1-n)lnN-(1-n)ln(1-n)SNk=-nlnn-(1-n)ln(1-n)SNk=-nlnn-ln(1-n)+nln(1-n)SNk=nln(1-n)n-ln(1-n)(1)

Further,

(1-n)n=1-12{1+tanh(x)}12{1+tanh(x)}(1-n)n=12{1-tanh(x)}12{1+tanh(x)}(1-n)n={1-tanh(x)}21-tanh2(x)(1-n)n={1-tanh(x)}2cosh2x(1-n)n=1-ex-e-xex+e-x2ex+e-x2(1-n)n=2e-x22(1-n)n=2e-2xln(1-n)n=-2x

Also,

(1-n)=1-12{1+tanh(x)}(1-n)=12{1-tanh(x)}(1-n)=121-ex-e-xex+e-x(1-n)=122e-xex+e-x(1-n)=e-x2ex+e-x/2(1-n)=e-x2coshxln(1-n)=-x-2ln(coshx)

Now, by substituting these values in equation (1), we get,

SNk=nln(1-n)n-ln(1-n)SNk=12{1+tanh(x)}(-2x)-{-x-2ln(coshx)}SNk=-x-xtanh(x)+x+2ln(coshx)SNk=2ln(coshx)-xtanh(x)SNk=2lncoshμBkT-μBkTtanhμBkT

AtT0,

x=μBkT

Hence, the entropy becomes

SNk=2lncoshμBkT-xtanhμBkTSNk=2ln(coshx)-xtanh(x)SNk=2lnex+e-x2-xex-e-xex+e-xSNk=ln2×ex2-xexexSNk=xlne-xSNk=x-xSNk=0

At T,

x=μBkT0

Hence, the entropy becomes,

SNk=2lncoshμBkT-xtanhμBkTSNk=2ln(coshx)-xtanh(x)SNk=2ln(cosh0)-xtanh(0)SNk=ln(2cosh0)SNk=ln(2×1)SNk=0.693

03

Final answer

The entropy of the two-state paramagnet as the function of temperature is S=Nk[ln(2coshx)xtanhx]with x=μB/kT.

The entropy at temperature T0and Tshows expected behavior along with consistency with the third law of thermodynamics.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the thermodynamic identity to derive the heat capacity formula

CV=TSTV

which is occasionally more convenient than the more familiar expression in terms of U. Then derive a similar formula for CP, by first writing dHin terms of dSand dP.

An ice cube (mass 30g)0°Cis left sitting on the kitchen table, where it gradually melts. The temperature in the kitchen is 25°C.

(a) Calculate the change in the entropy of the ice cube as it melts into water at 0°C. (Don't worry about the fact that the volume changes somewhat.)

(b) Calculate the change in the entropy of the water (from the melted ice) as its temperature rises from 0°Cto 25°C.

(c) Calculate the change in the entropy of the kitchen as it gives up heat to the melting ice/water.

(d) Calculate the net change in the entropy of the universe during this process. Is the net change positive, negative, or zero? Is this what you would expect?

In Problem 2.18 you showed that the multiplicity of an Einstein solid containing N oscillators and q energy units is approximately

Ω(N,q)q+Nqqq+NNN

(a) Starting with this formula, find an expression for the entropy of an Einstein solid as a function of N and q. Explain why the factors omitted from the formula have no effect on the entropy, when N and q are large.

(b) Use the result of part (a) to calculate the temperature of an Einstein solid as a function of its energy. (The energy is U=qϵ, where ϵis a constant.) Be sure to simplify your result as much as possible.

(c) Invert the relation you found in part (b) to find the energy as a function of temperature, then differentiate to find a formula for the heat capacity.

(d) Show that, in the limit T, the heat capacity is C=Nk. (Hint: When x is very small, ex1+x.) Is this the result you would expect? Explain.

(e) Make a graph (possibly using a computer) of the result of part (c). To avoid awkward numerical factors, plot C/Nkvs. the dimensionless variable t=kT/ϵ, for t in the range from 0 to about 2. Discuss your prediction for the heat capacity at low temperature, comparing to the data for lead, aluminum, and diamond shown in Figure 1.14. Estimate the value of ϵ, in electron-volts, for each of those real solids.

(f) Derive a more accurate approximation for the heat capacity at high temperatures, by keeping terms through x3 in the expansions of the exponentials and then carefully expanding the denominator and multiplying everything out. Throw away terms that will be smaller than(ϵ/kT)2 in the final answer. When the smoke clears, you should find C=Nk1-112(ϵ/kT)2.

Use Table 3.1 to compute the temperatures of solid A and solid B when qA=1. Then compute both temperatures when qA=60. Express your answers in terms of ε/k, and then in kelvins assuming that ε=0.1eV.

In Section 2.5 I quoted a theorem on the multiplicity of any system with only quadratic degrees of freedom: In the high-temperature limit where the number of units of energy is much larger than the number of degrees of freedom, the multiplicity of any such system is proportional to UNf/2, whereNf is the total number of degrees of freedom. Find an expression for the energy of such a system in terms of its temperature, and comment on the result. How can you tell that this formula forΩ cannot be valid when the total energy is very small?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free