Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write down the equilibrium condition for each of the following reactions:

(a)2HH2(b)2CO+O22CO2(c)CH4+2O22H2O+CO2(d)H2SO42H++SO42-(e)2p+2nHe4

Short Answer

Expert verified

Hence, the equilibrium condition for each reaction is given.

Step by step solution

01

Given information

We have the following reactions:

(a)2HH2(b)2CO+O22CO2(c)CH4+2O22H2O+CO2(d)H2SO42H++SO42-(e)2p+2nHe4

02

Explanation

(a) For the first reaction, the equilibrium condition is:

2μH=2μH2

(b) For the second reaction, the equilibrium condition is:

2μCO+μO2=2μCO2

(c) For the third reaction, the equilibrium condition is:

μCH4+2μO2=2μH2O+μCO2

(d) For the fourth reaction, the equilibrium condition is:

μH2SO4=2μH++μH2SO4

(e) For the fifth reaction, the equilibrium condition is:

2μp+2μn=4μHe

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compare expression 5.68 for the Gibbs free energy of a dilute solution to expression 5.61 for the Gibbs free energy of an ideal mixture. Under what circumstances should these two expressions agree? Show that they do agree under these circumstances, and identify the function f(T, P) in this case.

When solid quartz "dissolves" in water, it combines with water molecules in the reaction

SiO2(s)+2H2O(l)H4SiO4(aq)

(a) Use this data in the back of this book to compute the amount of silica dissolved in water in equilibrium with solid quartz, at 25° C

(b) Use the van't Hoff equation (Problem 5.85) to compute the amount of silica dissolved in water in equilibrium with solid quartz at 100°C.

The metabolism of a glucose molecule (see previous problem) occurs in many steps, resulting in the synthesis of 38 molecules of ATP (adenosine triphosphate) out of ADP (adenosine diphosphate) and phosphate ions. When the ATP splits back into ADP and phosphate, it liberates energy that is used in a host of important processes including protein synthesis, active transport of molecules across cell membranes, and muscle contraction. In a muscle, the reaction ATP ADP + phosphate is catalyzed by an enzyme called myosin that is attached to a muscle filament. As the reaction takes place, the myosin molecule pulls on an adjacent filament, causing the muscle to contract. The force it exerts averages about 4 piconewtons and acts over a distance of about 11nm. From this data and the results of the previous problem, compute the "efficiency" of a muscle, that is, the ratio of the actual work done to the maximum work that the laws of thermodynamics would allow.

Suppose that an unsaturated air mass is rising and cooling at the dry adiabatic lapse rate found in problem 1.40. If the temperature at ground level is 25 C and the relative humidity there is 50%, at what altitude will this air mass become saturated so that condensation begins and a cloud forms (see Figure 5.18)? (Refer to the vapor pressure graph drawn in Problem 5.42)

Suppose you start with a liquid mixture of 60% nitrogen and 40% oxygen. Describe what happens as the temperature of this mixture increases. Be sure to give the temperatures and compositions at which boiling begins and ends.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free