Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Most pasta recipes instruct you to add a teaspoon of salt to a pot

of boiling water. Does this have a significant effect on the boiling temperature?

Justify your answer with a rough numerical estimate.

Short Answer

Expert verified

There is hardly any effect on the boiling temperature of water.

Step by step solution

01

Given information

Addition of salt effects the boiling temperature of water. The shift in the boiling temperature is given by

T-T=nBRT2LHere,Toisboilingtemperatureofwaterwithoutanysolute;nBisno.ofmolesofsolute;Lislatentheatoffusion.

02

Effect of adding salt

We are adding a tablespoon of salt.

Assuming a tablespoon of salt = 6g

n=mMM=58.44gmolm=6gn=658.44n=0.1026gmol

03

substituting the values

To = 373 K

n = 0.1026

R = 8.3 1JK-mol

L = 2.26×106J

localid="1647192130510" T-To=0.1026×8.31×(373)22.26×106T-To=0.053KT=373+0.053=373.053K

This change is hardly significant.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Repeat the previous problem for the diagram in Figure 5.35 (right), which has an important qualitative difference. In this phase diagram, you should find that β and liquid are in equilibrium only at temperatures below the point where the liquid is in equilibrium with infinitesimal amounts of αandβ . This point is called a peritectic point. Examples of systems with this behaviour include water + NaCl and leucite + quartz.

Suppose you have a liquid (say, water) in equilibrium with its gas phase, inside some closed container. You then pump in an inert gas (say, air), thus raising the pressure exerted on the liquid. What happens?

(a) For the liquid to remain in diffusive equilibrium with its gas phase, the chemical potentials of each must change by the same amount: dμl=dμg Use this fact and equation 5.40 to derive a differential equation for the equilibrium vapour pressure, Pv as a function of the total pressure P. (Treat the gases as ideal, and assume that none of the inert gas dissolves in the liquid.)

(b) Solve the differential equation to obtain

Pv(P)-PvPv=eP-PvV/NkT

where the ratio V/N in the exponent is that of the liquid. (The term Pv(Pv) is just the vapour pressure in the absence of the inert gas.) Thus, the presence of the inert gas leads to a slight increase in the vapour pressure: It causes more of the liquid to evaporate.

(c) Calculate the percent increase in vapour pressure when air at atmospheric pressure is added to a system of water and water vapour in equilibrium at 25°C. Argue more generally that the increase in vapour pressure due to the presence of an inert gas will be negligible except under extreme conditions.

In constructing the phase diagram from the free energy graphs in Figure 5.30, I assumed that both the liquid and the gas are ideal mixtures. Suppose instead that the liquid has a substantial positive mixing energy, so that its free energy curve, while still concave-up, is much flatter. In this case a portion of the curve may still lie above the gas's free energy curve at TA. Draw a qualitatively accurate phase diagram for such a system, showing how you obtained the phase diagram from the free energy graphs. Show that there is a particular composition at which this gas mixture will condense with no change in composition. This special composition is called an azeotrope.

Problem 5.64. Figure 5.32 shows the phase diagram of plagioclase feldspar, which can be considered a mixture of albite NaAlSi3O8and anorthiteCaAl2Si2O8

a) Suppose you discover a rock in which each plagioclase crystal varies in composition from center to edge, with the centers of the largest crystals composed of 70% anorthite and the outermost parts of all crystals made of essentially pure albite. Explain in some detail how this variation might arise. What was the composition of the liquid magma from which the rock formed?

(b) Suppose you discover another rock body in which the crystals near the top are albite-rich while the crystals near the bottom are anorthite-rich. Explain how this variation might arise.

Sulfuric acid, H2SO4,readily dissociates intoH+andHSO4-H+andHSO4-ions

H2SO4H++HSO4-

The hydrogen sulfate ion, in turn, can dissociate again:

HSO4-H++SO42-

The equilibrium constants for these reactions, in aqueous solutions at 298 K, are approximately 10 and 10*, respectively. (For dissociation of acids it is usually more convenient to look up K than G°. By the way, the negative base-10 logarithm of K for such a reaction is called pK, in analogy to pH. So for the first reaction pK = -2, while for the second reaction pK = 1.9.)

(a) Argue that the first reaction tends so strongly to the right that we might as well consider it to have gone to completion, in any solution that could possibly be considered dilute. At what pH values would a significant fraction of the sulfuric acid not be dissociated?

(b) In industrialized regions where lots of coal is burned, the concentration of sulfate in rainwater is typically 5 x 10 mol/kg. The sulfate can take any of the chemical forms mentioned above. Show that, at this concentration, the second reaction will also have gone essentially to completion, so all the sulfate is in the form of SOg. What is the pH of this rainwater?

(c) Explain why you can neglect dissociation of water into H* and OH in answering the previous question. (d) At what pH would dissolved sulfate be equally distributed between HSO and SO2-?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free