Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 5.35 (left) shows the free energy curves at one particular temperature for a two-component system that has three possible solid phases (crystal structures), one of essentially pure A, one of essentially pure B, and one of intermediate composition. Draw tangent lines to determine which phases are present at which values of x. To determine qualitatively what happens at other temperatures, you can simply shift the liquid free energy curve up or down (since the entropy of the liquid is larger than that of any solid). Do so, and construct a qualitative phase diagram for this system. You should find two eutectic points. Examples of systems with this behaviour include water + ethylene glycol and tin - magnesium.

Short Answer

Expert verified

Starting at x=0 on the left, the αphase and liquid phase are stable, then the liquid phase is stable, then the β phase and liquid phase are stable, then a small range of x where only the β phase is stable, and ultimately just the liquid phase is stable.

Step by step solution

01

Given information

The free energy curves at one particular temperature for a two-component system that has three possible solid phases (crystal structures), one of essentially pure A, one of essentially pure B, and one of intermediate composition.

02

Step 2: 

Consider the Gibbs free energy graph below, which shows a system with three solid phases: α,βandγ. One is a pure A substance, one is a pure B substance, and one is a mixture of the two.

03

Explanation 

First, as shown in the diagram, we draw three tangent lines from left to right: first, the αphase plus the liquid phase are stable, then the liquid phase is stable, then the βphase plus the liquid phase are stable, then a narrow range of x where only the βphase is stable, and finally only the liquid phase is stable.

04

Calculations

The Gibbs free energy is given by

G=U-TS+PV

At constant entropy and constant pressure, differentiate the Gibbs free energy to get:

role="math" localid="1647065790638" dG=dU-SdT+PdV

By increasing the temperature,

GT=-S

We can see from this equation that as the temperature rises, the stability ranges of αand β vanish. When we lower the temperature, the stability of γ plus the liquid appears, as seen in the previous figure for large x. As the temperature drops, the liquid's stable range narrows until it vanishes at two locations, which are known as the eutectic points (where all the liquid freezes).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Problem 5.58. In this problem you will model the mixing energy of a mixture in a relatively simple way, in order to relate the existence of a solubility gap to molecular behaviour. Consider a mixture of A and B molecules that is ideal in every way but one: The potential energy due to the interaction of neighbouring molecules depends upon whether the molecules are like or unlike. Let n be the average number of nearest neighbours of any given molecule (perhaps 6 or 8 or 10). Let n be the average potential energy associated with the interaction between neighbouring molecules that are the same (4-A or B-B), and let uAB be the potential energy associated with the interaction of a neighbouring unlike pair (4-B). There are no interactions beyond the range of the nearest neighbours; the values of μoandμABare independent of the amounts of A and B; and the entropy of mixing is the same as for an ideal solution.

(a) Show that when the system is unmixed, the total potential energy due to neighbor-neighbor interactions is 12Nnu0. (Hint: Be sure to count each neighbouring pair only once.)

(b) Find a formula for the total potential energy when the system is mixed, in terms of x, the fraction of B.

(c) Subtract the results of parts (a) and (b) to obtain the change in energy upon mixing. Simplify the result as much as possible; you should obtain an expression proportional to x(1-x). Sketch this function vs. x, for both possible signs of uAB-u0.

(d) Show that the slope of the mixing energy function is finite at both end- points, unlike the slope of the mixing entropy function.

(e) For the case uAB>u0, plot a graph of the Gibbs free energy of this system

vs. x at several temperatures. Discuss the implications.

(f) Find an expression for the maximum temperature at which this system has

a solubility gap.

(g) Make a very rough estimate of uAB-u0for a liquid mixture that has a

solubility gap below 100°C.

(h) Use a computer to plot the phase diagram (T vs. x) for this system.

The formula for CP-CV derived in the previous problem can also be derived starting with the definitions of these quantities in terms of U and H. Do so. Most of the derivation is very similar, but at one point you need to use the relation P=-(F/V)T.

The first excited energy level of a hydrogen atom has an energy of 10.2 eV, if we take the ground-state energy to be zero. However, the first excited level is really four independent states, all with the same energy. We can therefore assign it an entropy of S=kln4, since for this given value of the energy, the multiplicity is 4. Question: For what temperatures is the Helmholtz free energy of a hydrogen atom in the first excited level positive, and for what temperatures is it negative? (Comment: When F for the level is negative, the atom will spontaneously go from the ground state into that level, since F=0 for the ground state and F always tends to decrease. However, for a system this small, the conclusion is only a probabilistic statement; random fluctuations will be very significant.)

In a hydrogen fuel cell, the steps of the chemical reaction are
at-electrode:H2+2OH-2H2O+2e-at+electrode:12O2+H2O+2e-2OH-

Calculate the voltage of the cell. What is the minimum voltage required for electrolysis of water? Explain briefly.

Show that equation 5.40 is in agreement with the explicit formula for the chemical potential of a monatomic ideal gas derived in Section 3.5. Show how to calculate μ°for a monatomic ideal gas.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free