Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What happens when you add salt to the ice bath in an ice cream maker? How is it possible for the temperature to spontaneously drop below 0"C? Explain in as much detail as you can.

Short Answer

Expert verified

The ice cream bath is always below 0 degrees Celsius.

Step by step solution

01

Given information

Add salt to the ice bath in an ice cream maker.

02

Explanation

We know that water turns to the ice (solid) phase at 0°C, but the temperature of the ice bath must be less than 0°C, which can be accomplished by adding salt to the ice bath system. Adding salt to the ice bath system lowers the phase temperature, resulting in a lower transition temperature between the phases. The kinetic energy of the particles in the mixture determines the temperature of the mixture, and as the kinetic energy reduces, the temperature of the mixture decreases.

03

Explanation

The ice cream and salt mixture are insulated from the environment in the ice cream making system, which means that the energy required to break the chemical bonds of the salt crystal must be taken from the kinetic energy of the mixture particle, resulting in a decrease in kinetic energy and thus the temperature. As a result, the ice cream bath is always below 0 degrees Celsius.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Osmotic pressure measurements can be used to determine the molecular weights of large molecules such as proteins. For a solution of large molecules to qualify as "dilute," its molar concentration must be very low and hence the osmotic pressure can be too small to measure accurately. For this reason, the usual procedure is to measure the osmotic pressure at a variety of concentrations, then extrapolate the results to the limit of zero concentration. Here are some data for the protein hemoglobin dissolved in water at 3oC:

Concentration (grams/liter)h (cm)
5.62.0
16.66.5
32.512.8
43.417.6
54.022.6

The quantity his the equilibrium difference in fluid level between the solution and the pure solvent,. From these measurements, determine the approximate molecular weight of hemoglobin (in grams per mole).

An experimental arrangement for measuring osmotic pressure. Solvent flows across the membrane from left to right until the difference in fluid level,h, is just enough to supply the osmotic pressure.

Ordinarily, the partial pressure of water vapour in the air is less than the equilibrium vapour pressure at the ambient temperature; this is why a cup of water will spontaneously evaporate. The ratio of the partial pressure of water vapour to the equilibrium vapour pressure is called the relative humidity. When the relative humidity is 100%, so that water vapour in the atmosphere would be in diffusive equilibrium with a cup of liquid water, we say that the air is saturated. The dew point is the temperature at which the relative humidity would be 100%, for a given partial pressure of water vapour.

(a) Use the vapour pressure equation (Problem 5.35) and the data in Figure 5.11 to plot a graph of the vapour pressure of water from 0°C to 40°C. Notice that the vapour pressure approximately doubles for every 10° increase in temperature.

(b) Suppose that the temperature on a certain summer day is 30° C. What is the dew point if the relative humidity is 90%? What if the relative humidity is 40%?

Use the data at the back of this book to calculate the slope of the calcite-aragonite phase boundary (at 298 K). You located one point on this phase boundary in Problem 5.28; use this information to sketch the phase diagram of calcium carbonate.

Calcium carbonate, CaCO3, has two common crystalline forms, calcite and aragonite. Thermodynamic data for these phases can be found at the back of this book.

(a) Which is stable at earth's surface, calcite or aragonite?

(b) Calculate the pressure (still at room temperature) at which the other phase

should become stable.

The first excited energy level of a hydrogen atom has an energy of 10.2 eV, if we take the ground-state energy to be zero. However, the first excited level is really four independent states, all with the same energy. We can therefore assign it an entropy of S =kln(4) , since for this given value of the energy, the multiplicity is 4. Question: For what temperatures is the Helmholtz free energy of a hydrogen atom in the first excited level positive, and for what temperatures is it negative? (Comment: When F for the level is negative, the atom will spontaneously go from the ground state into that level, since F=0 for the ground state and F always tends to decrease. However, for a system this small, the conclusion is only a probabilistic statement; random fluctuations will be very

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free