Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat the previous problem for the opposite case where the liquid has a substantial negative mixing energy, so that its free energy curve dips |below the gas's free energy curve at a temperature higher than TB. Construct the phase diagram and show that this system also has an azeotrope.

Short Answer

Expert verified

Because the entropy of the depends on the temperature and has a negative sign, the liquid curve moves downward as the temperature rises. Lowering the temperature causes the liquid curve to rise until it coincides with the gas curve at one point, forming an azeotrope combination.

Step by step solution

01

Given information

The liquid has a substantial negative mixing energy, so that its free energy curve dips |below the gas's free energy curve at a temperature higher than TB.

02

Explanation

Consider the following curve, which depicts the free energy of the gas and liquid at TB. We can observe that the gas curve is more concave than the liquid curve, indicating that the two curves meet at two locations, indicating that the liquid and gas are stable in two different composition ranges. Because the liquid has a negative Gibbs energy, it dives below the gas curve.

03

Explanation

Draw a tangent on a graph between x and T (the phase diagram) at the two intersection locations as indicated in the accompanying figure; this tangent intersects with the gas and liquid curves. Then draw perpendicular lines from the four intersection points on a graph between x and T (the phase diagram).

04

Explanation

The Gibbs free energy is given by:

G=U+PV-TS

At constant volume and entropy, the change in Gibbs free energy is as follows:

dG=dU+VdP-SdT

By increasing the temperature, we get

GT=-S

Because the entropy of the depends on the temperature and has a negative sign, the liquid curve moves downward as the temperature rises. Lowering the temperature causes the liquid curve to rise until it coincides with the gas curve at one point, forming an azeotrope combination.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume that the air you exhale is at 35°C, with a relative humidity of 90%. This air immediately mixes with environmental air at 5°C and unknown relative humidity; during the mixing, a variety of intermediate temperatures and water vapour percentages temporarily occur. If you are able to "see your breath" due to the formation of cloud droplets during this mixing, what can you conclude about the relative humidity of your environment? (Refer to the vapour pressure graph drawn in Problem 5.42.)

Suppose you cool a mixture of 50% nitrogen and 50% oxygen until it liquefies. Describe the cooling sequence in detail, including the temperatures and compositions at which liquefaction begins and ends.

Plot the Van der Waals isotherm for T/Tc = 0.95, working in terms of reduced variables. Perform the Maxwell construction (either graphically or numerically) to obtain the vapor pressure. Then plot the Gibbs free energy (in units of NkTc) as a function of pressure for this same temperature and check that this graph predicts the same value for the vapor pressure.

Effect of altitude on boiling water.

(a) Use the result of the previous problem and the data in Figure 5.11 to plot a graph of the vapor pressure of water between 50°C and 100°C. How well can you match the data at the two endpoints?

(b) Reading the graph backward, estimate the boiling temperature of water at each of the locations for which you determined the pressure in Problem 1.16. Explain why it takes longer to cook noodles when you're camping in the mountains.

(c) Show that the dependence of boiling temperature on altitude is very nearly (though not exactly) a linear function, and calculate the slope in degrees Celsius per thousand feet (or in degrees Celsius per kilometer).

Seawater has a salinity of 3.5%, meaning that if you boil away a kilogram of seawater, when you're finished you'll have 35gof solids (mostly localid="1647507373105" NaCl) left in the pot. When dissolved, sodium chloride dissociates into separate Na+and Cl-ions.

(a) Calculate the osmotic pressure difference between seawater and fresh water. Assume for simplicity that all the dissolved salts in seawater are NaCl.

(b) If you apply a pressure difference greater than the osmotic pressure to a solution separated from pure solvent by a semipermeable membrane, you get reverse osmosis: a flow of solvent out of the solution. This process can be used to desalinate seawater. Calculate the minimum work required to desalinate one liter of seawater. Discuss some reasons why the actual work required would be greater than the minimum.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free