Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In constructing the phase diagram from the free energy graphs in Figure 5.30, I assumed that both the liquid and the gas are ideal mixtures. Suppose instead that the liquid has a substantial positive mixing energy, so that its free energy curve, while still concave-up, is much flatter. In this case a portion of the curve may still lie above the gas's free energy curve at TA. Draw a qualitatively accurate phase diagram for such a system, showing how you obtained the phase diagram from the free energy graphs. Show that there is a particular composition at which this gas mixture will condense with no change in composition. This special composition is called an azeotrope.

Short Answer

Expert verified

The entropy of a gas increases as the temperature rises; because the gas has more degrees of freedom, it has more entropy.

As a result of the negative sign of entropy, the gas curve falls. Lowering the temperature causes the curve to rise until it coincides with the liquid curve at one point, forming an azeotrope combination.

Step by step solution

01

Given information

In constructing the phase diagram from the free energy graphs in Figure 5.30, I assumed that both the liquid and the gas are ideal mixtures. Suppose instead that the liquid has a substantial positive mixing energy, so that its free energy curve, while still concave-up, is much flatter. In this case a portion of the curve may still lie above the gas's free energy curve at TA.

02

Explanation

Consider the following curve, which shows the free energy of the gas and liquid at temperature TA. We can see that the gas curve is more concave than the liquid curve, indicating that the two curves intersect at two points, indicating that the liquid and gas are stable in two different composition ranges.

03

Explanation

Draw a tangent on a graph between x and T (the phase diagram) at the two intersection locations as indicated in the accompanying figure; this tangent intersects with the gas and liquid curves. Then draw perpendicular lines from the four intersection points on a graph between x and T (the phase diagram).

04

Explantion

The Gibbs free energy is given by:

G=U+PV-TS

At constant volume and entropy, the change in Gibbs free energy is as follows:

dG=dU+VdP-SdT

By increasing the temperature, we get

GT=-S

The entropy of a gas increases as the temperature rises; because the gas has more degrees of freedom, it has more entropy.

As a result of the negative sign of entropy, the gas curve falls. Lowering the temperature causes the curve to rise until it coincides with the liquid curve at one point, forming an azeotrope combination.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you cool a mixture of 50% nitrogen and 50% oxygen until it liquefies. Describe the cooling sequence in detail, including the temperatures and compositions at which liquefaction begins and ends.

Assume that the air you exhale is at 35°C, with a relative humidity of 90%. This air immediately mixes with environmental air at 5°C and unknown relative humidity; during the mixing, a variety of intermediate temperatures and water vapour percentages temporarily occur. If you are able to "see your breath" due to the formation of cloud droplets during this mixing, what can you conclude about the relative humidity of your environment? (Refer to the vapour pressure graph drawn in Problem 5.42.)

Consider the production of ammonia from nitrogen and hydrogen,

N2 + 3H2 2NH3
at 298 K and 1 bar. From the values of Hand S tabulated at the back of this book, compute Gfor this reaction and check that it is consistent with the value given in the table.

Sketch a qualitatively accurate graph of G vs. T for a pure substance as it changes from solid to liquid to gas at fixed pressure. Think carefully about the slope of the graph. Mark the points of the phase transformations and discuss the features of the graph briefly.

An inventor proposes to make a heat engine using water/ice as the working substance, taking advantage of the fact that water expands as it freezes. A weight to be lifted is placed on top of a piston over a cylinder of water at 1°C. The system is then placed in thermal contact with a low-temperature reservoir at -1°C until the water freezes into ice, lifting the weight. The weight is then removed and the ice is melted by putting it in contact with a high-temperature reservoir at 1°C. The inventor is pleased with this device because it can seemingly perform an unlimited amount of work while absorbing only a finite amount of heat. Explain the flaw in the inventor's reasoning, and use the Clausius-Clapeyron relation to prove that the maximum efficiency of this engine is still given by the Carnot formula, 1 -Te/Th

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free