Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 5.35. The Clausius-Clapeyron relation 5.47 is a differential equation that can, in principle, be solved to find the shape of the entire phase-boundary curve. To solve it, however, you have to know how both L and V depend on temperature and pressure. Often, over a reasonably small section of the curve, you can take L to be constant. Moreover, if one of the phases is a gas, you can usually neglect the volume of the condensed phase and just take V to be the volume of the gas, expressed in terms of temperature and pressure using the ideal gas law. Making all these assumptions, solve the differential equation explicitly to obtain the following formula for the phase boundary curve:

P= (constant) x e-L/RT

This result is called the vapour pressure equation. Caution: Be sure to use this formula only when all the assumptions just listed are valid.

Short Answer

Expert verified

HenceP=constant×e-LRT

Step by step solution

01

Given information

Using the ideal gas law,

PVg=RTVg=RTP

Using Clausius Clapeyron Equation

dPdT=LT·ΔVdPdT=LT·Vg=LT×RTP=P·LRT2dPP=LR·dTT2

02

Calculation

Integrating both sides

dPP=LR·dTT2lnP=-LR·1T+constant

Exponentiating both sides

P=e-LRT+const
role="math" localid="1646902017006" P=constant×e-LRT

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Effect of altitude on boiling water.

(a) Use the result of the previous problem and the data in Figure 5.11 to plot a graph of the vapor pressure of water between 50°C and 100°C. How well can you match the data at the two endpoints?

(b) Reading the graph backward, estimate the boiling temperature of water at each of the locations for which you determined the pressure in Problem 1.16. Explain why it takes longer to cook noodles when you're camping in the mountains.

(c) Show that the dependence of boiling temperature on altitude is very nearly (though not exactly) a linear function, and calculate the slope in degrees Celsius per thousand feet (or in degrees Celsius per kilometer).

Show that equation 5.40 is in agreement with the explicit formula for the chemical potential of a monatomic ideal gas derived in Section 3.5. Show how to calculate μ°for a monatomic ideal gas.

Below 0.3 K the slope of the °He solid-liquid phase boundary is negative (see Figure 5.13).

(a) Which phase, solid or liquid, is more dense? Which phase has more entropy (per mole)? Explain your reasoning carefully.

(b) Use the third law of thermodynamics to argue that the slope of the phase boundary must go to zero at T = 0. (Note that the *He solid-liquid phase boundary is essentially horizontal below 1 K.)

(c) Suppose that you compress liquid *He adiabatically until it becomes a solid. If the temperature just before the phase change is 0.1 K, will the temperature after the phase change be higher or lower? Explain your reasoning carefully.

Compare expression 5.68 for the Gibbs free energy of a dilute solution to expression 5.61 for the Gibbs free energy of an ideal mixture. Under what circumstances should these two expressions agree? Show that they do agree under these circumstances, and identify the function f(T, P) in this case.

By subtracting μNfrom localid="1648229964064" U,H,F,orG,one can obtain four new thermodynamic potentials. Of the four, the most useful is the grand free energy (or grand potential),

ΦU-TS-μN.

(a) Derive the thermodynamic identity for Φ, and the related formulas for the partial derivatives ofΦwith respect toT,V, and μN

(b) Prove that, for a system in thermal and diffusive equilibrium (with a reservoir that can supply both energy and particles), Φtends to decrease.

(c) Prove thatϕ=-PV.

(d) As a simple application, let the system be a single proton, which can be "occupied" either by a single electron (making a hydrogen atom, with energy -13.6eV) or by none (with energy zero). Neglect the excited states of the atom and the two spin states of the electron, so that both the occupied and unoccupied states of the proton have zero entropy. Suppose that this proton is in the atmosphere of the sun, a reservoir with a temperature of 5800Kand an electron concentration of about 2×1019per cubic meter. Calculate Φfor both the occupied and unoccupied states, to determine which is more stable under these conditions. To compute the chemical potential of the electrons, treat them as an ideal gas. At about what temperature would the occupied and unoccupied states be equally stable, for this value of the electron concentration? (As in Problem 5.20, the prediction for such a small system is only a probabilistic one.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free