Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the production of ammonia from nitrogen and hydrogen,

N2+3H22NH3

at 298 K and 1 bar. From the values of ΔH and S tabulated at the back of this book, compute ΔG for this reaction and check that it is consistent with the value given in the table.

Short Answer

Expert verified

The value of ΔG = -32972.5J

Step by step solution

01

Given Information

Temp, T = 298 K and the
pressure P= 1 bar.
The table from the book

02

Explanation

Gibbs energy can be calculated by the equation below.

G=H-T S
Where, G= Gibbs energy, H= enthalpy, T= absolute temperature and S= entropy.

Lets assume there is an infinitesimal change is Gibbs energy, then

ΔG = ΔH - TΔS ........................................(1)

Similarly equation for the change in enthalpy for the given reaction is written as

ΔH=2ΔHNH3-ΔHN2-3ΔHH2

Now substitute the value from the table , we get

ΔH=2(-46.11kJ)-0-0=-92.2kJ=-92.2kJ1000J1kJ=-92.2×103J

Change in entropy for the reaction

ΔS=2ΔSNH3-ΔSN2-3ΔSH2

Substitute values

ΔS=2192.45JK-1-191.61JK-1-3130.68JK-1=-198.75JK-1

Substitute calculated values in equation (1), we get
ΔG=-92.2×103J-(298K)-198.75JK-1=-32972.5J

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The partial-derivative relations derived in Problems 1.46,3.33, and 5.12, plus a bit more partial-derivative trickery, can be used to derive a completely general relation between CPandCV.

(a) With the heat capacity expressions from Problem 3.33 in mind, first considerSto be a function of TandV.Expand dSin terms of the partial derivatives (S/T)Vand (S/V)T. Note that one of these derivatives is related toCV

(b) To bring in CP, considerlocalid="1648430264419" Vto be a function ofTand P and expand dV in terms of partial derivatives in a similar way. Plug this expression for dV into the result of part (a), then set dP=0and note that you have derived a nontrivial expression for (S/T)P. This derivative is related to CP, so you now have a formula for the difference CP-CV

(c) Write the remaining partial derivatives in terms of measurable quantities using a Maxwell relation and the result of Problem 1.46. Your final result should be

CP=CV+TVβ2κT

(d) Check that this formula gives the correct value of CP-CVfor an ideal gas.

(e) Use this formula to argue that CPcannot be less than CV.

(f) Use the data in Problem 1.46 to evaluateCP-CVfor water and for mercury at room temperature. By what percentage do the two heat capacities differ?

(g) Figure 1.14 shows measured values of CPfor three elemental solids, compared to predicted values of CV. It turns out that a graph of βvs.T for a solid has same general appearance as a graph of heat capacity. Use this fact to explain why CPand CVagree at low temperatures but diverge in the way they do at higher temperatures.

In this problem you will derive approximate formulas for the shapes of the phase boundary curves in diagrams such as Figures 5.31 and 5.32, assuming that both phases behave as ideal mixtures. For definiteness, suppose that the phases are liquid and gas.

(a) Show that in an ideal mixture of A and B, the chemical potential of species A can be written μA=μA°+kTln(1-x)where A is the chemical potential of pure A (at the same temperature and pressure) and x=NB/NA+NB. Derive a similar formula for the chemical potential of species B. Note that both formulas can be written for either the liquid phase or the gas phase.

(b) At any given temperature T, let x1 and xgbe the compositions of the liquid and gas phases that are in equilibrium with each other. By setting the appropriate chemical potentials equal to each other, show that x1and xg obey the equations =1-xl1-xg=eΔGA°/RTandxlxg=eΔGB°/RT and where ΔG°represents the change in G for the pure substance undergoing the phase change at temperature T.

(c) Over a limited range of temperatures, we can often assume that the main temperature dependence of ΔG°=ΔH°-TΔS°comes from the explicit T; both ΔH°andΔS°are approximately constant. With this simplification, rewrite the results of part (b) entirely in terms of ΔHA°,ΔHB° TA, and TB (eliminating ΔGandΔS). Solve for x1and xgas functions of T.

(d) Plot your results for the nitrogen-oxygen system. The latent heats of the pure substances areΔHN2°=5570J/molandΔHO2°=6820J/mol. Compare to the experimental diagram, Figure 5.31.

(e) Show that you can account for the shape of Figure 5.32 with suitably chosenΔH° values. What are those values?

Suppose that an unsaturated air mass is rising and cooling at the dry adiabatic lapse rate found in problem 1.40. If the temperature at ground level is 25 C and the relative humidity there is 50%, at what altitude will this air mass become saturated so that condensation begins and a cloud forms (see Figure 5.18)? (Refer to the vapor pressure graph drawn in Problem 5.42)

Most pasta recipes instruct you to add a teaspoon of salt to a pot

of boiling water. Does this have a significant effect on the boiling temperature?

Justify your answer with a rough numerical estimate.

Go through the arithmetic to verify that diamond becomes more stable than graphite at approximately 15 kbar.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free