Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the data at the back of this book to verify the values of Hand G quoted above for the lead-acid reaction 5.13.

Short Answer

Expert verified

The value of Gibbs free energy = -315.72 kJ.

Step by step solution

01

Given Information

T= 298 K and P=1 bar.

The information from the table

02

Explanation

Gibbs energy is given by

G= H-TS

where G= Gibbs energy, H= Enthalpy, T =temp and S =entropy.

Assume there is infinitesimal change in Gibbs energy , then

G=H-TS.............(1)

Now write equation for change in enthalpy for the given reaction

ΔH=2ΔHPbSO4+2ΔHH2O-ΔHPb-ΔHPbO2+4ΔHH+-2ΔHSO42-

Now substitute the values from the given table, we get

ΔH=2(-920.0kJ)+2(-285.83kJ)-0-(-277.4kJ)-4(0)-2(-909.27kJ)=-315.72kJ

Similarly write equation for change in Gibbs energy for the given reaction

ΔG=(2ΔGPbSO4+2ΔGH2O-ΔGPb-ΔGPbO2+4ΔGH+-2ΔGSO42-)

Put the values from the table, we get

G=2(-813.0kJ)+2(-237.13kJ)-0-(-217.33kJ)-4(0)-2(-744.53kJ)

= -315.72 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ordinarily, the partial pressure of water vapour in the air is less than the equilibrium vapour pressure at the ambient temperature; this is why a cup of water will spontaneously evaporate. The ratio of the partial pressure of water vapour to the equilibrium vapour pressure is called the relative humidity. When the relative humidity is 100%, so that water vapour in the atmosphere would be in diffusive equilibrium with a cup of liquid water, we say that the air is saturated. The dew point is the temperature at which the relative humidity would be 100%, for a given partial pressure of water vapour.

(a) Use the vapour pressure equation (Problem 5.35) and the data in Figure 5.11 to plot a graph of the vapour pressure of water from 0°C to 40°C. Notice that the vapour pressure approximately doubles for every 10° increase in temperature.

(b) Suppose that the temperature on a certain summer day is 30° C. What is the dew point if the relative humidity is 90%? What if the relative humidity is 40%?

The partial-derivative relations derived in Problems 1.46,3.33, and 5.12, plus a bit more partial-derivative trickery, can be used to derive a completely general relation between CPandCV.

(a) With the heat capacity expressions from Problem 3.33 in mind, first considerSto be a function of TandV.Expand dSin terms of the partial derivatives (S/T)Vand (S/V)T. Note that one of these derivatives is related toCV

(b) To bring in CP, considerlocalid="1648430264419" Vto be a function ofTand P and expand dV in terms of partial derivatives in a similar way. Plug this expression for dV into the result of part (a), then set dP=0and note that you have derived a nontrivial expression for (S/T)P. This derivative is related to CP, so you now have a formula for the difference CP-CV

(c) Write the remaining partial derivatives in terms of measurable quantities using a Maxwell relation and the result of Problem 1.46. Your final result should be

CP=CV+TVβ2κT

(d) Check that this formula gives the correct value of CP-CVfor an ideal gas.

(e) Use this formula to argue that CPcannot be less than CV.

(f) Use the data in Problem 1.46 to evaluateCP-CVfor water and for mercury at room temperature. By what percentage do the two heat capacities differ?

(g) Figure 1.14 shows measured values of CPfor three elemental solids, compared to predicted values of CV. It turns out that a graph of βvs.T for a solid has same general appearance as a graph of heat capacity. Use this fact to explain why CPand CVagree at low temperatures but diverge in the way they do at higher temperatures.

Use the data at the back of this book to verify the values of ΔH and ΔGquoted above for the lead-acid reaction 5.13.

At temp 298K and pressure 1 bar.

Derive the thermodynamic identity for G (equation 5.23), and from it the three partial derivative relations 5.24.

By subtracting μNfrom localid="1648229964064" U,H,F,orG,one can obtain four new thermodynamic potentials. Of the four, the most useful is the grand free energy (or grand potential),

ΦU-TS-μN.

(a) Derive the thermodynamic identity for Φ, and the related formulas for the partial derivatives ofΦwith respect toT,V, and μN

(b) Prove that, for a system in thermal and diffusive equilibrium (with a reservoir that can supply both energy and particles), Φtends to decrease.

(c) Prove thatϕ=-PV.

(d) As a simple application, let the system be a single proton, which can be "occupied" either by a single electron (making a hydrogen atom, with energy -13.6eV) or by none (with energy zero). Neglect the excited states of the atom and the two spin states of the electron, so that both the occupied and unoccupied states of the proton have zero entropy. Suppose that this proton is in the atmosphere of the sun, a reservoir with a temperature of 5800Kand an electron concentration of about 2×1019per cubic meter. Calculate Φfor both the occupied and unoccupied states, to determine which is more stable under these conditions. To compute the chemical potential of the electrons, treat them as an ideal gas. At about what temperature would the occupied and unoccupied states be equally stable, for this value of the electron concentration? (As in Problem 5.20, the prediction for such a small system is only a probabilistic one.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free