Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a Maxwell relation from the previous problem and the third law of thermodynamics to prove that the thermal expansion coefficient β(defined in Problem 1.7) must be zero at T=0.

Short Answer

Expert verified

Coefficient of Expansion becomes Zero at T=0.

Step by step solution

01

Given Information

Maxwellrelation:VTP=-δSδPT

02

Explanation

We know that " The thermal expansion coefficient is defined as the fractional change in volume per unit temperature change".

This means

β=ΔV/VΔTβ=1VVTP

From the Maxwell relation -δSδPT

So,

β=1VVTPβ=-1VδSδPT

From the the third law of thermodynamics as T0, the entropy approaches to zero or some constant value which is independent of pressure.

This means δSδPTbecomes Zero as T0.and βbecomes 0.

We can conclude that coefficient of expansion becomes zero at T0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The first excited energy level of a hydrogen atom has an energy of 10.2 eV, if we take the ground-state energy to be zero. However, the first excited level is really four independent states, all with the same energy. We can therefore assign it an entropy of S =kln(4) , since for this given value of the energy, the multiplicity is 4. Question: For what temperatures is the Helmholtz free energy of a hydrogen atom in the first excited level positive, and for what temperatures is it negative? (Comment: When F for the level is negative, the atom will spontaneously go from the ground state into that level, since F=0 for the ground state and F always tends to decrease. However, for a system this small, the conclusion is only a probabilistic statement; random fluctuations will be very

In working high-pressure geochemistry problems it is usually more

convenient to express volumes in units of kJ/kbar. Work out the conversion factor

between this unit and m3

The enthalpy and Gibbs free energy, as defined in this section, give special treatment to mechanical (compression-expansion) work, -PdV. Analogous quantities can be defined for other kinds of work, for instance, magnetic work." Consider the situation shown in Figure 5.7, where a long solenoid ( Nturns, total length N) surrounds a magnetic specimen (perhaps a paramagnetic solid). If the magnetic field inside the specimen is Band its total magnetic moment is M, then we define an auxilliary field H(often called simply the magnetic field) by the relation

H1μ0B-MV,

where μ0is the "permeability of free space," 4π×10-7N/A2. Assuming cylindrical symmetry, all vectors must point either left or right, so we can drop the -symbols and agree that rightward is positive, leftward negative. From Ampere's law, one can also show that when the current in the wire is I, the Hfield inside the solenoid is NI/L, whether or not the specimen is present.

(a) Imagine making an infinitesimal change in the current in the wire, resulting in infinitesimal changes in B, M, and H. Use Faraday's law to show that the work required (from the power supply) to accomplish this change is Wtotal=VHdB. (Neglect the resistance of the wire.)

(b) Rewrite the result of part (a) in terms of Hand M, then subtract off the work that would be required even if the specimen were not present. If we define W, the work done on the system, to be what's left, show that W=μ0HdM.

(c) What is the thermodynamic identity for this system? (Include magnetic work but not mechanical work or particle flow.)

(d) How would you define analogues of the enthalpy and Gibbs free energy for a magnetic system? (The Helmholtz free energy is defined in the same way as for a mechanical system.) Derive the thermodynamic identities for each of these quantities, and discuss their interpretations.

In Problems 3.30 and 3.31 you calculated the entropies of diamond and graphite at 500 K. Use these values to predict the slope of the graphite- diamond phase boundary at 500 K, and compare to Figure 5.17. Why is the slope almost constant at still higher temperatures? Why is the slope zero at T = 0?

Consider the production of ammonia from nitrogen and hydrogen,

N2+3H22NH3

at 298 K and 1 bar. From the values of ΔH and S tabulated at the back of this book, compute ΔG for this reaction and check that it is consistent with the value given in the table.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free