Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At about what pressure would the mean free path of an air molecule at room temperature equal 10cm, the size of a typical laboratory apparatus?

Short Answer

Expert verified

The mean free path pressure is P=0.146Nm2

Step by step solution

01

Step: 1 To find pressure of mean free path:

The equation as

PV=NKT

V=π(2γ)2

By equating,

P=UT4πγ2λ

02

Subtituting the values 

subtituting the values of

T=100dr,γ=0.01,P=0.082N/m2as

P=1.381×1023×1004π×2×10102×0.01

P=0.274Nm2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the total thermal energy in a liter of helium at room temperature and atmospheric pressure. Then repeat the calculation for a liter of air.

Problem 1.36. In the course of pumping up a bicycle tire, a liter of air at atmospheric pressure is compressed adiabatically to a pressure of 7 atm. (Air is mostly diatomic nitrogen and oxygen.)

(a) What is the final volume of this air after compression?

(b) How much work is done in compressing the air?

(c) If the temperature of the air is initially300K , what is the temperature after compression?

Two identical bubbles of gas form at the bottom of a lake, then rise to the surface. Because the pressure is much lower at the surface than at the bottom, both bubbles expand as they rise. However, bubble A rises very quickly, so that no heat is exchanged between it and the water. Meanwhile, bubble B rises slowly (impeded by a tangle of seaweed), so that it always remains in thermal equilibrium with the water (which has the same temperature everywhere). Which of the two bubbles is larger by the time they reach the surface? Explain your reasoning fully.

Measured heat capacities of solids and liquids are almost always at constant pressure, not constant volume. To see why, estimate the pressure needed to keep Vfixed as Tincreases, as follows.

(a) First imagine slightly increasing the temperature of a material at constant pressure. Write the change in volume,dV1, in terms of dTand the thermal expansion coefficient βintroduced in Problem 1.7.

(b) Now imagine slightly compressing the material, holding its temperature fixed. Write the change in volume for this process, dV2, in terms of dPand the isothermal compressibility κT, defined as

κT1VVPT

(c) Finally, imagine that you compress the material just enough in part (b) to offset the expansion in part (a). Then the ratio of dPtodTis equal to (P/T)V, since there is no net change in volume. Express this partial derivative in terms of βandκT. Then express it more abstractly in terms of the partial derivatives used to define βandκT. For the second expression you should obtain

PTV=(V/T)P(V/P)T

This result is actually a purely mathematical relation, true for any three quantities that are related in such a way that any two determine the third.

(d) Compute β,κT,and(P/T)Vfor an ideal gas, and check that the three expressions satisfy the identity you found in part (c).

(e) For water at 25C,β=2.57×104K1andκT=4.52×1010Pa1. Suppose you increase the temperature of some water from 20Cto30C. How much pressure must you apply to prevent it from expanding? Repeat the calculation for mercury, for which (at25C)β=1.81×104K1andκT=4.04×1011Pa1

Given the choice, would you rather measure the heat capacities of these substances at constant vor at constant p?

Given an example to illustrate why you cannot accurately judge the temperature of an object by how hot or cold it feels to the touch?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free