Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The enthalpy of combustion of a gallon (3.8 liters) of gasoline is about 31,000kcal. The enthalpy of combustion of an ounce28g of corn flakes is about100kcal. Compare the cost of gasoline to the cost of corn flakes, per calorie.

Short Answer

Expert verified

The cost of gasoliene isRategasoline=0.009cents/kcalto the cost of corn flakes isRatecorn=1.14cents/kcal.

Step by step solution

01

Step: 1 Definition of Enthalpy:

The enthalpy change that happens when one mole of a material is created from its component elements in their standard states is known as the standard enthalpy of formation. The standard enthalpy of production of a substance known in its initial state is zero.

02

Step: 2 Finding entalpy:

To compare the prices of gasoline and corn flakes, we must look at the price per kcal. First, the average price of a gallon of gasoline in 2018is roughly $2.79; one gallon of gasoline has an enthalpy of 31000kcal, hence the price perkcalis:$Rate Gasolienerole="math" localid="1650287339371" =$2.7931000kca=0.009cents/kcalRate gasoliene=0.009cents/kcalused $1.00=100centsas an example. The cheapest corn flake (which I discovered on the internet - Kellogg's brand-) costs $20.45and weighs 18ounces, thus one ounce costs $1.14.An ounce of corn flakes has an enthalpy of 100kcal, and so the price per kcalis:

RateCorn=$1.14100kcalRateCorn=1.14cents/kcal.

The enthalpy price for 1calof fakes is 100times higher than the price of1calof Gasoliene enthalpy.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the heat capacity of liquid water per molecule, in terms of K . Suppose (incorrectly) that all the thermal energy of water is stored in quadratic degrees of freedom. How many degrees of freedom would each molecule have to have?

When the temperature of liquid mercury increases by one degree Celsius (or one kelvin), its volume increases by one part in 550,000 . The fractional increase in volume per unit change in temperature (when the pressure is held fixed) is called the thermal expansion coefficient, β :
βΔV/VΔT
(where V is volume, T is temperature, and Δ signifies a change, which in this case should really be infinitesimal if β is to be well defined). So for mercury, β =1 / 550,000 K-1=1.81 x 10-4 K-1. (The exact value varies with temperature, but between 0oC and 200oC the variation is less than 1 %.)
(a) Get a mercury thermometer, estimate the size of the bulb at the bottom, and then estimate what the inside diameter of the tube has to be in order for the thermometer to work as required. Assume that the thermal expansion of the glass is negligible.
(b) The thermal expansion coefficient of water varies significantly with temperature: It is 7.5 x 10 -4 K-1 at 100oC, but decreases as the temperature is lowered until it becomes zero at 4oC. Below 4oC it is slightly negative, reaching a value of -0.68 x 10-4K-1 at 0oC. (This behavior is related to the fact that ice is less dense than water.) With this behavior in mind, imagine the process of a lake freezing over, and discuss in some detail how this process would be different if the thermal expansion coefficient of water were always positive.


Even at low density, real gases don’t quite obey the ideal gas law. A systematic way to account for deviations from ideal behavior is the virial

expansion,

PVnRT(1+B(T)(V/n)+C(T)(V/n)2+)

where the functions B(T), C(T), and so on are called the virial coefficients. When the density of the gas is fairly low, so that the volume per mole is large, each term in the series is much smaller than the one before. In many situations, it’s sufficient to omit the third term and concentrate on the second, whose coefficient B(T)is called the second virial coefficient (the first coefficient is 1). Here are some measured values of the second virial coefficient for nitrogen (N2):

T(K)
B(cm3/mol)
100–160
200–35
300–4.2
4009.0
50016.9
60021.3
  1. For each temperature in the table, compute the second term in the virial equation, B(T)/(V/n), for nitrogen at atmospheric pressure. Discuss the validity of the ideal gas law under these conditions.
  2. Think about the forces between molecules, and explain why we might expect B(T)to be negative at low temperatures but positive at high temperatures.
  3. Any proposed relation between P, V, andT, like the ideal gas law or the virial equation, is called an equation of state. Another famous equation of state, which is qualitatively accurate even for dense fluids, is the van der Waals equation,
    (P+an2V2)(Vnb)=nRT
    where a and b are constants that depend on the type of gas. Calculate the second and third virial coefficients (Band C) for a gas obeying the van der Waals equation, in terms of aand b. (Hint: The binomial expansion says that (1+x)p1+px+12p(p1)x2, provided that |px|1. Apply this approximation to the quantity [1(nb/V)]1.)
  4. Plot a graph of the van der Waals prediction for B(T), choosing aand bso as to approximately match the data given above for nitrogen. Discuss the accuracy of the van der Waals equation over this range of conditions. (The van der Waals equation is discussed much further in Section 5.3.)

Geologists measure conductive heat flow out of the earth by drilling holes (a few hundred meters deep) and measuring the temperature as a function of depth. Suppose that in a certain location the temperature increases by20Cper kilometer of depth and the thermal conductivity of the rock is 2.5W/mK. What is the rate of heat conduction per square meter in this location? Assuming that this value is typical of other locations over all of the earth's surface, at approximately what rate is the earth losing heat via conduction? (The radius of the earth is 6400km.)

Make a rough estimate of thermal conductivity of helium at room temperature. Discuss your result, explaining why it differs the value for air

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free