Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a Diesel engine, atmospheric air is quickly compressed to about 1/20 of its original volume. Estimate the temperature of the air after compression, and explain why a Diesel engine does not require spark plugs.

Short Answer

Expert verified

The temperature of air compression is 971.14 K.

Compressed temp is much above the auto ignition temp of diesel so diesel engines don't need any spark plugs.

Step by step solution

01

Given information

Atmospheric air is quickly compressed to about 1/20 of its original volume.

02

Explanation

The expression below explains the relationship between V and T as

VTfR2=Constant..............................(1)

Where V = volume and T = Temp

Consider the air molecules are diatomic, so its degree of freedom is

f=5( 3 translation + 2 rotational).

Write the equation for final and initial conditions and equate them to find final temp as below

ViTif2=VfTff2Tff2=ViVfTif2...................................(2)Tf=ViVf2fTi.....................................(3)

Substitute values and calculate to get final temp

Tf=VoVo2025293KTf=971.14K

We know that the auto ignition temperature for diesel is 210oC

So the fuel will automatically ignite when the air is compressed as temp is much above the auto ignition temp.

For this reason diesel engines don't need any spark plugs.


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a uniform rod of material whose temperature varies only along its length, in the xdirection. By considering the heat flowing from both directions into a small segment of length Δx

derive the heat equation,

Tt=K2Tx2

where K=kt/cρi, cis the specific heat of the material, and ρis its density. (Assume that the only motion of energy is heat conduction within the rod; no energy enters or leaves along the sides.) Assuming that Kis independent of temperature, show that a solution of the heat equation is

T(x,t)=T0+Atex2/4Kt,

where T0is a constant background temperature and Ais any constant. Sketch (or use a computer to plot) this solution as a function of x, for several values of t. Interpret this solution physically, and discuss in some detail how energy spreads through the rod as time passes.

An ideal diatomic gas, in a cylinder with a movable piston, undergoes the rectangular cyclic process shown in Figure 1.10(b). Assume that the temperature is always such that rotational degrees of freedom are active, but vibrational modes are “frozen out.” Also, assume that the only type of work done on the gas is quasistatic compression-expansion work.

  1. For each of the four steps A through D, compute the work done on the gas, the heat added to the gas, and the change in the energy content of the gas. Express all answers in terms of P1, P2, V1, and V2. (Hint: Compute role="math" localid="1651641251162" ΔUbefore Q, using the ideal gas law and the equipartition theorem.)
  2. Describe in words what is physically being done during each of the four steps; for example, during step A, heat is added to the gas (from an external flame or something) while the piston is held fixed.
  3. Compute the net work done on the gas, the net heat added to the gas, and the net change in the energy of the gas during the entire cycle. Are the results as you expected? Explain briefly.

Problem 1.36. In the course of pumping up a bicycle tire, a liter of air at atmospheric pressure is compressed adiabatically to a pressure of 7 atm. (Air is mostly diatomic nitrogen and oxygen.)

(a) What is the final volume of this air after compression?

(b) How much work is done in compressing the air?

(c) If the temperature of the air is initially300K , what is the temperature after compression?

Your 200gcup of tea is boiling-hot. About how much ice should you add to bring it down to a comfortable sipping temperature of 65C? (Assume that the ice is initially at -15C. The specific heat capacity of ice is (0.5cal/gC..)

Uranium has two common isotopes, with atomic masses of 238 and 235. one way to separate these isotopes is to combine the uranium with fluorine to make uranium hexafluoride gas, UF6, then exploit the difference in the average thermal speeds of molecules containing the different isotopes. Calculate the rms speed of each molecule at room temperature, and compare them.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free