Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cup containing 200g of water is sitting on your dining room table. After carefully measuring its temperature to be 20oC, you leave the room. Returning ten minutes later, you measure its temperature again and find that it is now 25oC. What can you conclude about the amount of heat added to the water? (Hint: This is a trick question.)

Short Answer

Expert verified

Amount of heat added is 4186 J.

Step by step solution

01

Given information

Mass of water, m=200 g = 0.2 kg
Difference in temperature, ΔT=(25-20)oC = 5oC
Specific of water, C=4186 J /kgK

02

Explanation

Amount of heat added can be calculated as

Q=m c ΔT

Substitute values and calculate

Q=mcT=(0.2kg)×(4186J/kg°C)×(5°C)Q=4186J

4186 Joule is added to the system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

By applying a pressure of 200atm, you can compress water to 99%of its usual volume. Sketch this process (not necessarily to scale) on aPV diagram, and estimate the work required to compress a liter of water by this amount. Does the result surprise you?

Consider the combustion of one mole of methane gas:

CH4(gas)+2O2(gas)CO2(gas)+2H2O(gas)

The system is at standard temperature (298K)and pressure 105Paboth before and after the reaction.

(a) First imagine the process of converting a mole of methane into its elemental constituents (graphite and hydrogen gas). Use the data at the back of this book to find ΔHfor this process.

(b) Now imagine forming a mole of CO2and two moles of water vapor from their elemental constituents. Determine ΔHfor this process.

(c) What is ΔHfor the actual reaction in which methane and oxygen form carbon dioxide and water vapor directly? Explain.

(d) How much heat is given off during this reaction, assuming that no "other" forms of work are done?

(e) What is the change in the system's energy during this reaction? How would your answer differ if theH2Oended up as liquid water instead of vapor?

(f) The sun has a mass of2×1030kgand gives off energy at a rate of 3.9×1026watts. If the source of the sun's energy were ordinary combustion of a chemical fuel such as methane, about how long could it last?

List all the degrees of freedom, or as many as you can, for a molecule of water vapor. (Think carefully about the various ways in which the molecule can vibrate.)

During a hailstorm, hailstones with an average mass of 2g and a speed of 15 m/s strike a window pane at a 45o angle. The area of the window is 0.5 m2 and the hailstones hit it at a rate of 30 per second. What average pressure do they exert on the window? How does this compare to the pressure of the atmosphere?


Make a rough estimate of thermal conductivity of helium at room temperature. Discuss your result, explaining why it differs the value for air

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free