Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Rankine temperature scale(abbreviated °R) uses the same scale size degrees as Fahrenheit, but measured up from absolute zero like Kelvin(so Rankine is to Fahrenheit as Kelvin is to Celsius). Find the conversion formula between Rankine and Fahrenheit and also between Rankine and Kelvin. What is the room temperature on the Rankine scale?

Short Answer

Expert verified

R = 95K and R = 536.67°R

Step by step solution

01

Writing the conversion equations of Kelvin to Celsius and Rankine to Fahrenheit.

The conversion equation for Kelvin to Celsius is,

K = C + 273.15 -----------(1)

and similarly conversion equation for Rankine to Fahrenheit is,

R = F + 459.67 -----------(2)

02

Comparison of Kelvin and Rankine scales at absolute zero,

But we know that, F = 95C+32

substituting this in equation (2),

R = 95C+491.67

substituting C from equation (1), we get,

R =95K

03

Standard room temperature in Celsius scale usually refers to 25°C and using the conversion formula to write in Rankine scale.

The room temperature in Kelvin scale will be 25 + 273.15 = 298.15K

Applying the conversion formula of Kelvin to Rankine scale, we get,

R = 95(298.15)

R = 536.67°R

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For a solid, we also define the linear thermal expansion coefficient, α, as the fractional increase in length per degree:

αΔL/LΔT
(a) For steel, α is 1.1 x 10-5 K-1. Estimate the total variation in length of a 1 km steel bridge between a cold winter night and a hot summer day.
(b) The dial thermometer in Figure 1.2 uses a coiled metal strip made of two different metals laminated together. Explain how this works.
(c) Prove that the volume thermal expansion coefficient of a solid is equal to the sum of its linear expansion coefficients in the three directions β=αx + αy + αz. (So for an isotropic solid, which expands the same in all directions, β =3 α .)


Consider the combustion of one mole of methane gas:

CH4(gas)+2O2(gas)CO2(gas)+2H2O(gas)

The system is at standard temperature (298K)and pressure 105Paboth before and after the reaction.

(a) First imagine the process of converting a mole of methane into its elemental constituents (graphite and hydrogen gas). Use the data at the back of this book to find ΔHfor this process.

(b) Now imagine forming a mole of CO2and two moles of water vapor from their elemental constituents. Determine ΔHfor this process.

(c) What is ΔHfor the actual reaction in which methane and oxygen form carbon dioxide and water vapor directly? Explain.

(d) How much heat is given off during this reaction, assuming that no "other" forms of work are done?

(e) What is the change in the system's energy during this reaction? How would your answer differ if theH2Oended up as liquid water instead of vapor?

(f) The sun has a mass of2×1030kgand gives off energy at a rate of 3.9×1026watts. If the source of the sun's energy were ordinary combustion of a chemical fuel such as methane, about how long could it last?

Give an example of a process in which no heat is added to a system, but its temperature increases. Then give an example of the opposite: a process in which heat is added to a system but its temperature does not change.

By applying a pressure of 200atm, you can compress water to 99%of its usual volume. Sketch this process (not necessarily to scale) on aPV diagram, and estimate the work required to compress a liter of water by this amount. Does the result surprise you?

According to a standard reference table, the R value of a 3.5 inch-thick vertical air space (within a wall) is 1.0 R in English units), while the R value of a 3.5-inch thickness of fiberglass batting is 10.9. Calculate the R value of a 3.5-inch thickness of still air, then discuss whether these two numbers are reasonable. (Hint: These reference values include the effects of convection.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free