Chapter 1: 1.18. (page 13)
Calculate the rms speed of a nitrogen molecule at a room temperature?
Short Answer
The rms speed of a nitrogen molecule at room temperature is 16.34 m/s
Chapter 1: 1.18. (page 13)
Calculate the rms speed of a nitrogen molecule at a room temperature?
The rms speed of a nitrogen molecule at room temperature is 16.34 m/s
All the tools & learning materials you need for study success - in one app.
Get started for freeA battery is connected in series to a resistor, which is immersed in water (to prepare a nice hot cup of tea). Would you classify the flow of energy from the battery to the resistor as "heat" or "work"? What about the flow of energy from the resistor to the water?
Problem 1.41. To measure the heat capacity of an object, all you usually have to do is put it in thermal contact with another object whose heat capacity you know. As an example, suppose that a chunk of metal is immersed in boiling water (100°C), then is quickly transferred into a Styrofoam cup containing 250 g of water at 20°C. After a minute or so, the temperature of the contents of the cup is 24°C. Assume that during this time no significant energy is transferred between the contents of the cup and the surroundings. The heat capacity of the cup itself is negligible.
In analogy with the thermal conductivity, derive an approximate formula for the diffusion coefficient of an ideal gas in terms of the mean free path and the average thermal speed. Evaluate your formula numerically for air at room temperature and atmospheric pressure, and compare to the experimental value quoted in the text. How does D depend on T, at fixed pressure?
A cup containing 200g of water is sitting on your dining room table. After carefully measuring its temperature to be 20oC, you leave the room. Returning ten minutes later, you measure its temperature again and find that it is now 25oC. What can you conclude about the amount of heat added to the water? (Hint: This is a trick question.)
If you poke a hole in a container full of gas, the gas will start leaking out. In this problem, you will make a rough estimate of the rate at which gas escapes through a hole. (This process is called effusion, at least when the hole is sufficiently small.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.