Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer to sum the rotational partition function (equation 6.30) algebraically, keeping terms through j = 6. Then calculate the average energy and the heat capacity. Plot the heat capacity for values ofkT/ϵ ranging from 0 to 3. Have you kept enough terms in Z to give accurate results within this temperature range?

Short Answer

Expert verified

The average energy is E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tand

The average heat capacity is C=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

Step by step solution

01

Given information

Heat capacity for values kT/ϵranging from 0 to 3.

j = 6

02

Explanation

Rotational partition function is:

Z=(2j+1)e-j(j+1)ϵ/kT

Let,

t=kTϵ

Therefore,

Z=(2j+1)e-j(j+1)/t(1)

The average energy is:

E¯=-1ZZβ(2)

By chain rule:

Zβ=ZttβZβ=Ztβt-1

But β=1/kT, henceβ=1/tϵhence,

Zβ=t(2j+1)e-j(j+1)/tt1tϵ-1Zβ=j(j+1)(2j+1)e-j(j+1)/t1t2-1t2ϵ-1Zβ=-ϵj(j+1)(2j+1)e-j(j+1)/t

Substitute into (2)

role="math" localid="1647453692824" E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/t(3)

The partial derivative of total energy with respect to temperature equals the heat capacity, which is:

C=E¯TC=kϵE¯t

Substitute from (3):

role="math" localid="1647454207193" C=ϵktϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tC=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

03

Explanation

Using python to plot a function between t and C/k. The code is given below:

The graph is:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the most probable speed, average speed and rms speed for OxygenO2molecules at room temperature.

In the low-temperature limit (kT<<), each term in the rotational partition function is much smaller than the one before. Since the first term is independent of T, cut off the sum after the second term and compute the average energy and the heat capacity in this approximation. Keep only the largest T-dependent term at each stage of the calculation. Is your result consistent with the third law of thermodynamics? Sketch the behavior of the heat capacity at all temperature, interpolating between the high-temperature and low- temperature expressions.

Use Boltzmann factors to derive the exponential formula for the density of an isothermal atmosphere, already derived in Problems 1.16 and 3.37. (Hint: Let the system be a single air molecule, let s1 be a state with the molecule at sea level, and let s2 be a state with the molecule at height z.)

In the real world, most oscillators are not perfectly harmonic. For a quantum oscillator, this means that the spacing between energy levels is not exactly uniform. The vibrational levels of an H2 molecule, for example, are more accurately described by the approximate formula

Enϵ1.03n-0.03n2,n=0,1,2,

where ϵ is the spacing between the two lowest levels. Thus, the levels get closer together with increasing energy. (This formula is reasonably accurate only up to about n = 15; for slightly higher n it would say that En decreases with increasing n. In fact, the molecule dissociates and there are no more discrete levels beyond n 15.) Use a computer to calculate the partition function, average energy, and heat capacity of a system with this set of energy levels. Include all levels through n = 15, but check to see how the results change when you include fewer levels Plot the heat capacity as a function of kT/ϵ. Compare to the case of a perfectly harmonic oscillator with evenly spaced levels, and also to the vibrational portion of the graph in Figure 1.13.

Prove that, for any system in equilibrium with a reservoir at temperature T, the average value of E2 is

E2¯=1Z2Zβ2

Then use this result and the results of the previous two problems to derive a formula for σEin terms of the heat capacity, C=E¯/T

You should findσE=kTC/k

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free