Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer to sum the rotational partition function (equation 6.30) algebraically, keeping terms through j = 6. Then calculate the average energy and the heat capacity. Plot the heat capacity for values ofkT/ϵ ranging from 0 to 3. Have you kept enough terms in Z to give accurate results within this temperature range?

Short Answer

Expert verified

The average energy is E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tand

The average heat capacity is C=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

Step by step solution

01

Given information

Heat capacity for values kT/ϵranging from 0 to 3.

j = 6

02

Explanation

Rotational partition function is:

Z=(2j+1)e-j(j+1)ϵ/kT

Let,

t=kTϵ

Therefore,

Z=(2j+1)e-j(j+1)/t(1)

The average energy is:

E¯=-1ZZβ(2)

By chain rule:

Zβ=ZttβZβ=Ztβt-1

But β=1/kT, henceβ=1/tϵhence,

Zβ=t(2j+1)e-j(j+1)/tt1tϵ-1Zβ=j(j+1)(2j+1)e-j(j+1)/t1t2-1t2ϵ-1Zβ=-ϵj(j+1)(2j+1)e-j(j+1)/t

Substitute into (2)

role="math" localid="1647453692824" E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/t(3)

The partial derivative of total energy with respect to temperature equals the heat capacity, which is:

C=E¯TC=kϵE¯t

Substitute from (3):

role="math" localid="1647454207193" C=ϵktϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tC=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

03

Explanation

Using python to plot a function between t and C/k. The code is given below:

The graph is:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a classical "degree of freedom" that is linear rather than quadratic E=cqfor some constant c. (As example would be the kinetic energy of a highly relativistic particle in one dimension, written in terms of its momentum.) Repeat derivation of the equipartition theorem for this system, and show that the average energy isrole="math" localid="1646903677918" E-=kT.

In most paramagnetic materials, the individual magnetic particles have more than two independent states (orientations). The number of independent states depends on the particle's angular momentum “quantum number” j, which must be a multiple of 1/2. For j = 1/2 there are just two independent states, as discussed in the text above and in Section 3.3. More generally, the allowed values of the z component of a particle's magnetic moment are

Use Boltzmann factors to derive the exponential formula for the density of an isothermal atmosphere, already derived in Problems 1.16 and 3.37. (Hint: Let the system be a single air molecule, let s1 be a state with the molecule at sea level, and let s2 be a state with the molecule at height z.)

Verify from Maxwell speed distribution that the most likely speed of a molecule is2kTm.

Imagine a world in which space is two-dimensional, but the laws of physics are otherwise the same. Derive the speed distribution formula for an ideal gas of nonrelativistic particles in this fictitious world, and sketch this distribution. Carefully explain the similarities and differences between the two-dimensional and three-dimensional cases. What is the most likely velocity vector? What is the most likely speed?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free