Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer to sum the rotational partition function (equation 6.30) algebraically, keeping terms through j = 6. Then calculate the average energy and the heat capacity. Plot the heat capacity for values ofkT/ϵ ranging from 0 to 3. Have you kept enough terms in Z to give accurate results within this temperature range?

Short Answer

Expert verified

The average energy is E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tand

The average heat capacity is C=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

Step by step solution

01

Given information

Heat capacity for values kT/ϵranging from 0 to 3.

j = 6

02

Explanation

Rotational partition function is:

Z=(2j+1)e-j(j+1)ϵ/kT

Let,

t=kTϵ

Therefore,

Z=(2j+1)e-j(j+1)/t(1)

The average energy is:

E¯=-1ZZβ(2)

By chain rule:

Zβ=ZttβZβ=Ztβt-1

But β=1/kT, henceβ=1/tϵhence,

Zβ=t(2j+1)e-j(j+1)/tt1tϵ-1Zβ=j(j+1)(2j+1)e-j(j+1)/t1t2-1t2ϵ-1Zβ=-ϵj(j+1)(2j+1)e-j(j+1)/t

Substitute into (2)

role="math" localid="1647453692824" E¯=ϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/t(3)

The partial derivative of total energy with respect to temperature equals the heat capacity, which is:

C=E¯TC=kϵE¯t

Substitute from (3):

role="math" localid="1647454207193" C=ϵktϵj(j+1)(2j+1)e-j(j+1)/t(2j+1)e-j(j+1)/tC=k(2j+1)e-j(j+1)/tj2(j+1)2(2j+1)e-j(j+1)/tt(2j+1)e-j(j+1)/t2-kj(j+1)(2j+1)e-j(j+1)/t2t(2j+1)e-j(j+1)/t2

03

Explanation

Using python to plot a function between t and C/k. The code is given below:

The graph is:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You might wonder why all the molecules in a gas in thermal equilibrium don't have exactly the same speed. After all, when two molecules collide, doesn't the faster one always lose energy and the slower one gain energy? And if so, wouldn't repeated collisions eventually bring all the molecules to some common speed? Describe an example of a billiard-ball collision in which this is not the case: The faster ball gains energy and the slower ball loses energy. Include numbers, and be sure that your collision conserves both energy and momentum.

The energy required to ionise a hydrogen atom is 13.6 eV, so you might expect that the number of ionised hydrogen atoms in the sun's atmosphere would be even less than the number in the first excited state. Yet at the end of Chapter 5 I showed that the fraction of ionised hydrogen is much larger, nearly one atom in 10,000. Explain why this result is not a contradiction, and why it would be incorrect to try to calculate the fraction of ionised hydrogen using the methods of this section.

In problem 6.20 you computed the partition function for a quantum harmonic oscillator :Zh.o.=11-e-βε, where ε=hfis the spacing between energy levels.

(a) Find an expression for the Helmholtz free energy of a system of Nharmonic oscillators.

(b) Find an expression for the entropy of this system as a function of temperature. (Don't worry, the result is fairly complicated.)

In the low-temperature limit (kT<<), each term in the rotational partition function is much smaller than the one before. Since the first term is independent of T, cut off the sum after the second term and compute the average energy and the heat capacity in this approximation. Keep only the largest T-dependent term at each stage of the calculation. Is your result consistent with the third law of thermodynamics? Sketch the behavior of the heat capacity at all temperature, interpolating between the high-temperature and low- temperature expressions.

Show explicitly from the results of this section thatG=Nμfor an ideal gas.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free