Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Take a spin An online spinner has two colored regions-blue and yellow. According to the website, the probability that the spinner lands in the blue region on any spin is 0.80. Assume for now that this claim is correct. Suppose we spin the spinner12 times and let X= the number of times it lands in the blue region. Make a graph of the probability distribution of X. Describe its shape.

Short Answer

Expert verified

The left tail of the graph is much longer than the right tail, indicating that the distribution is skewed to the left.

Step by step solution

01

Given information

Given:

The Probability of success (p)=0.80

The Number of trials (n)=12

02

Simplification

Assume X to be the random variable that reflects the number of times the spinner falls in the blue region, with parameters n=12and p=0.80.

The probability distribution can be expressed as follows:

P(X=r)=12Cr×(0.80)r×(1-0.80)12-r

Graph: The probability distribution of X can be represented as follows:


The left tail of the graph is much longer than the right tail, indicating that the distribution is skewed to the left.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Benford’s law Exercise 9 described how the first digits of numbers in legitimate records often follow a model known as Benford’s law. Call the first digit of a randomly chosen legitimate record X for short. The probability distribution for X is shown here (note that a first digit can’t be 0). From Exercise 9, E(X)=3.441. Find the standard deviation of X. Interpret this value.

Auto emissions The amount of nitrogen oxides {NOX}) present in the exhaust of a particular type of car varies from car to car according to a Normal distribution with mean 1.4grams per mile (g/mi) and standard deviation 0.3g/mi. Two randomly selected cars of this type are tested. One has 1.1g/miof NOX; the other has 1.9g/mi. The test station attendant finds this difference in emissions between two similar cars surprising. if the NOX levels for two randomly chosen cars of this type are independent, find the probability that the difference is at least as large as the value the attendant observed.follow the four-step process.

Lie detectors A federal report finds that lie detector tests given to truthful persons have probability 0.2 of suggesting that the person is deceptive. 11 A company asks 12 job applicants about thefts from previous employers, using a lie detector to assess their truthfulness. Suppose that all 12 answer truthfully. Let Y= the number of people whom the lie detector indicates are being deceptive.

a. Find the probability that the lie detector indicates that at least 10 of the people are being honest.

b. Calculate and interpret μYμY.

c. Calculate and interpret σYσY.

Taking the train According to New Jersey Transit, the 8:00A.M. weekday train from Princeton to New York City has a 90%chance of arriving on time on a randomly selected day. Suppose this claim is true. Choose 6 days at random. Let localid="1654594369074" Y=the number of days on which the train arrives on time.

The last kiss Do people have a preference for the last thing they taste?

Researchers at the University of Michigan designed a study to find out. The researchers gave 22 students five different Hershey's Kisses (milk chocolate, dark chocolate, crème, caramel, and almond) in random order and asked the student to rate each one. Participants were not told how many Kisses they would be tasting. However, when the 5th and final Kiss was presented, participants were told that it would be their last one. 9¯Assume that the participants in the study don't have a special preference for the last thing they taste. That is, assume that the probability a person would prefer the last Kiss tasted is p=0.20.

a. Find the probability that 14 or more students would prefer the last Kiss tasted.

b. Of the 22 students, 14 gave the final Kiss the highest rating. Does this give convincing evidence that the participants have a preference for the last thing they taste?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free