Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Time and motion A time-and-motion study measures the time required for an assembly-line worker to perform a repetitive task. The data show that the time required to bring a part from a bin to its position on an automobile chassis varies from car to car according to a Normal distribution with mean 11seconds and standard deviation 2seconds. The time required to attach the part to the chassis follows a Normal distribution with mean 20seconds and standard deviation 4seconds. The study finds that the times required for the two steps are independent. A part that takes a long time to position, for example, does not take more or less time to attach than other parts.

(a) Find the mean and standard deviation of the time required for the entire operation of positioning and attaching the part.

(b) Management’s goal is for the entire process to take less than 30seconds. Find the probability that this goal will be met. Show your work

Short Answer

Expert verified

(a) Mean and Standard deviation are μS=31andσs=4.47

(b) The probability that the entire process will take less than30seconds is0.4129

Step by step solution

01

Part (a) Step 1: Given Information 

A time and motion study measures the time required for an assembly line worker to perform a repetitive task.

Given time required to bring a part from a bin to its position on an automobile chassis X follows a Normal distribution with mean 11seconds and standard deviation 2seconds.

The time required to attach the part to the chassis Yfollows a Normal distribution with mean 20seconds and standard deviation 4seconds.

We have to find that the mean and standard deviation of the time required for the entire operation of positioning and attaching the part.

02

Part (a) Step 2: Calculate the mean and standard deviation 

ConsiderS=X+Yasa random variable which shows the time required for the entire operation of positioning and attaching the part.

Here,

μX=11μY=20

Therefore, the mean of s

μS=μX+μY=11+20=31

Let's compute the standard deviation of s

Here,

σY=2σY=4

Standard deviation of S.

σS=σX2+σY2=22+42=4.47

03

Part (b) Step 1: Given  Information

Given in the question that Management’s goal is for the entire process to take less than 30seconds.

We have to find the probability that this goal will be met.

04

Part (b) Step 2: Explanation 

Let's find the probability that the entire process will take less than 30 seconds.

So, P(X+Y30)

First we standardize S=30

z=x-μsσs=30314.47=-0.22

Using a table of typical normal probabilities as a guide,

P(S30)

=P(z-0.22)=P(z0.22)=1P(z<0.22)=10.5871=0.4129

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During the winter months, the temperatures at the Starneses’ Colorado cabin can stay well below freezing (32°For0°C)for weeks at a time. To prevent the pipes from freezing, Mrs. Starnes sets the thermostat at 50°F.She also buys a digital thermometer that records the indoor temperature each night at midnight. Unfortunately, the thermometer is programmed to measure the temperature in degrees Celsius. Based on several years’ worth of data, the temperature Tin the cabin at midnight on a randomly selected night can be modeled by a Normal distribution with mean 8.5°Cand standard deviation 2.25°C. Let Y=the temperature in the cabin at midnight on a randomly selected night in degrees Fahrenheit (recall thatF=(9/5)C+32).

a. Find the mean of Y.

b. Calculate and interpret the standard deviation of Y.

c. Find the probability that the midnight temperature in the cabin is less than 40°F.

Using Benford's law According to Benford's law (Exercise 15, page 377), the probability that the first digit of the amount of a randomly chosen invoice is an 8 or a 9 is 0.097. Suppose you examine randomly selected invoices from a vendor until you find one whose amount begins with an 8 or a 9 .

a. How many invoices do you expect to examine before finding one that begins with an 8 or 9 ?

b. In fact, the first invoice you find with an amount that starts with an 8 or 9 is the 40 th invoice. Does this result provide convincing evidence that the invoice amounts are not genuine? Calculate an appropriate probability to support your answer.

Commuting to work Refer to Exercise 52 .

a. Assume that B and Ware independent random variables. Explain what this means in context.

b. Calculate and interpret the standard deviation of the difference D(Bus - Walk) in the time it would take Sulé to get to work on a randomly selected day.

c. From the information given, can you find the probability that it will take Sulé longer to get to work on the bus than if he walks on a randomly selected day? Explain why or why not.

Ladies Home Journal magazine reported that 66% of all dog owners greet their dog before greeting their spouse or children when they return home at the end of the workday. Assume that this claim is true. Suppose 12 dog owners are selected at random. Let X= the number of owners who greet their dogs first.

a. Explain why it is reasonable to use the binomial distribution for probability calculations involving X.

b. Find the probability that exactly 6 owners in the sample greet their dogs first when returning home from work.

c. In fact, only 4 of the owners in the sample greeted their dogs first. Does this give convincing evidence against the Ladies Home Journal claim? Calculate P(X4) and use the result to support your answer.

.Life insurance The risk of insuring one person’s life is reduced if we insure many people. Suppose that we insure two 21-year-old males, and that their ages at death are independent. If X1andX2are the insurer’s income from the two insurance policies, the insurer’s average income W on the two policies is

W=X1+X22=0.5X1+0.5X2

Find the mean and standard deviation of W. (You see that the mean income is the same as for a single policy but the standard deviation is less.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free