Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A balanced scale You have two scales for measuring weights in a chemistry lab. Both scales give answers that vary a bit in repeated weighings of the same item. If the true weight of a compound is 2.00grams (g), the first scale produces readings Xthat have mean 2.000gand standard deviation 0.002g. The second scale’s readings Yhave mean 2.001gand standard deviation . 0.001gThe readingsXandYare independent. Find the mean and standard deviation of the difference Y-Xbetween the readings. Interpret each value in context.

Short Answer

Expert verified

The difference between the readings is on average μY-X=0.001g,which varies on about σY-X0.002236g.

Step by step solution

01

Given Information

Given in the question that:

μX=2.000

σX=0.002

μY=2.001

σY=0.001

We have to find out that the mean and standard deviation of the difference Y-Xbetween the readings.

02

Explanation

The property mean and variance (ifXand Yare independent):

μX+Y=μX+μYσ2X+Y=μ2X+μ2Y

Then we obtain:

μY-X=μY-μX=2.001-2.000=0.001

σ2Y-X=μ2Y+μ2X=0.0012+0.0022=0.000005

The standard deviation is the square root of the variance:

σY-X=σ2Y-X=0.0000050.002236

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Benford’s law Faked numbers in tax returns, invoices, or expense account claims often display patterns that aren’t present in legitimate records. Some patterns, like too many round numbers, are obvious and easily avoided by a clever crook. Others are more subtle. It is a striking fact that the first digits of numbers in legitimate records often follow a model known as Benford’s law. 4 Call the first digit of a randomly chosen legitimate record X for short. The probability distribution for X is shown here (note that a first digit cannot be 0).

Part (a.) A histogram of the probability distribution is shown. Describe its shape.

Part (b). Calculate and interpret the expected value of X.

Sally takes the same bus to work every morning. Let X=the amount of time (in minutes) that she has to wait for the bus on a randomly selected day. The probability distribution of Xcan be modeled by a uniform density curve on the interval from data-custom-editor="chemistry" 0minutesto8minutes. Define the random variable V=60X

a. Explain what Vrepresents.

b. What probability distribution does Vhave?

Easy-start mower? A company has developed an "easy-start" mower that cranks the engine with the push of a button. The company claims that the probability the mower will start on any push of the button is 0.9. Assume for now that this claim is true. On the next 30 uses of the mower, let T=the number of times it starts on the first push of the button. Here is a histogram of the probability distribution of T :

a. What probability distribution does T have? Justify your answer.

b. Describe the shape of the probability distribution.

The time X it takes Hattan to drive to work on a randomly selected day follows a distribution that is approximately Normal with mean 15 minutes and standard deviation 6.5 minutes. Once he parks his car in his reserved space, it takes 5 more minutes for him to walk to his office. Let T= the total time it takes Hattan to reach his office on a randomly selected day, so T=X+5. Describe the shape, center, and variability of the probability distribution of T.

Working out Choose a person aged 19 to 25 years at random and ask, “In the past seven days, how many times did you go to an exercise or fitness center or work out?” Call the response Y for short. Based on a large sample survey, here is the probability distribution of Y

Part (a). A histogram of the probability distribution is shown. Describe its shape.

Part (b). Calculate and interpret the expected value of Y.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free