Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Each entry in a table of random digits like Table Dhas probability $$ of being a 0 , and the digits are independent of one another. Each line of Table D contains 40 random

digits. The mean and standard deviation of the number of 0 s in a randomly selected line will be approximately

a. mean =0.1, standard deviation =0.05.

b. mean =0.1, standard deviation =0.1.

c. mean =4, standard deviation =0.05.

d. mean =4, standard deviation =1.90.

e. mean =4, standard deviation =3.60.

Short Answer

Expert verified

The correct option is (d)

Step by step solution

01

Given Information

Probability of success (p)=0.1

Number of trials(n)=4

02

Explanation for correct option

The mean and standard deviation can be calculated as:

μ=n×p=40(0.1)=4σ=n×p×(1-p)=40(0.1)(1-0.1)=1.9

The mean and standard deviation are 4 and 1.9respectively.

Hence, the correct option is (d).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Toothpaste Ken is traveling for his business. He has a new 0.85-ounce tube of toothpaste that’s supposed to last him the whole trip. The amount of toothpaste Ken squeezes out of the tube each time he brushes is independent, and can be modeled by a Normal distribution with mean 0.13 ounce and standard deviation 0.02 ounce. If Ken brushes his teeth six times on a randomly selected trip, what’s the probability that he’ll use all the toothpaste in the tube?

Geometric or not? Determine whether each of the following scenarios describes a geometric setting. If so, define an appropriate geometric random variable.

a. Shuffle a standard deck of playing cards well. Then turn over one card at a time from the top of the deck until you get an ace.

b. Billy likes to play cornhole in his free time. On any toss, he has about a 20%chance of getting a bag into the hole. As a challenge one day, Billy decides to keep tossing bags until he gets one in the hole.

.Essay errors Typographical and spelling errors can be either “nonword errors” or “word errors.” A nonword error is not a real word, as when “the” is typed as “teh.” A word error is a real word, but not the right word, as when “lose” is typed as “loose.” When students are asked to write a 250-word essay (without spell-checking), the number of nonword errors X has the following probability distribution:

Value of X01234
Probability0.10.20.30.30.1

μX=2.1σX=1.136

Value of Y0123
Probability0.40.30.20.1

μY=1.0σY=1.0

a) Find the mean and standard deviation of the difference Y-Xin the number of errors made by a randomly selected student. Interpret each value in context.

(b) Challenge: Find the probability that a randomly selected student makes more word errors than nonword errors .

Exercises 21 and 22 examine how Benford’s law (Exercise 9) can be used to detect fraud.

Benford’s law and fraud A not-so-clever employee decided to fake his monthly expense report. He believed that the first digits of his expense amounts should be equally likely to be any of the numbers from 1 to 9. In that case, the first digit Yof a randomly selected expense amount would have the probability distribution shown in the histogram.

(a) What’s P(Y<6)? According to Benford’s law (see Exercise 9), what proportion of first digits in the employee’s expense amounts should be greater than 6? How could this information be used to detect a fake expense report?

(b) Explain why the mean of the random variable Yis located at the solid red line in the figure.

(c) According to Benford’s law, the expected value of the first digit is μX=3.441. Explain how this information could be used to detect a fake expense report.

Kids and toys In an experiment on the behavior of young children, each subject is placed in an area with five toys. Past experiments have shown that the probability distribution of the number X of toys played with by a randomly selected subject is as follows:

Part (a). Write the event “child plays with 5 toys” in terms of X. Then find its probability.

Part (b). What’s the probability that a randomly selected subject plays with at most 3 toys?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free