Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Take a spin Refer to Exercise 83. Calculate and interpret P(X7)

Short Answer

Expert verified

There are 7.26%chances that spinner would land in the blue region at most 7 times.

Step by step solution

01

Given Information

Number of trials (n)=12

Probability of success(p)=0.80

02

Simplification

Consider, Xbe the random variable that follows the binomial distribution with parameters n=12and p=0.80.

P(X7)can be calculated as:

P(X7)=P(X=0)+P(X=1)+.+P(X=7)=r=07Cr12×(0.80)r×(1-0.80)12-r=0.0726

Hence, the probability is0.0726

Interpretation:

There are 7.26%chances that spinner would land in the blue region at most 7 times.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

XA glass act In a process for manufacturing glassware, glass stems are sealed by heating them in a flame. Let X be the temperature (in degrees Celsius) for a randomly chosen glass. The mean and standard deviation of X are μX=550°Cand σX=5.7°C.

a. Is tempeгature a discrete ог continuous гandom variable? Explain уоuг answer.

b. The target temperature is 550°C. What are the mean and standard deviation of the number of degrees off target, D=X-550?

c. A manager asks for results in degrees Fahrenheit. The conversion of X into degrees Fahrenheit is given by Y=95X+32Y=95X+32. What are the mean μYand the standard deviation σYof the temperature of the flame in the Fahrenheit scale?

Fire insurance Suppose a homeowner spends \(300 for a home insurance policy that will pay out \)200,000 if the home is destroyed by fire in a given year. Let P = the profit made by the company on a single policy. From previous data, the probability that a home in this area will be destroyed by fire is 0.0002.

(a) Make a table that shows the probability distribution of P.

(b) Calculate the expected value of P. Explain what this result means for the insurance company.

(c) Calculate the standard deviation of P. Explain what this result means for the insurance company.

Kids and toys In an experiment on the behavior of young children, each subject is placed in an area with five toys. Past experiments have shown that the probability distribution of the number X of toys played with by a randomly selected subject is as follows:

Part (a). Write the event “child plays with 5 toys” in terms of X. Then find its probability.

Part (b). What’s the probability that a randomly selected subject plays with at most 3 toys?

Quick, click! An Internet reaction time test asks subjects to click their mouse button as soon as a light flashes on the screen. The light is programmed to go on at a randomly selected time after the subject clicks “Start.” The density curve models the amount of time Y (in seconds) that the subject has to wait for the light to flash.

a) Find and interpret P(Y>3.75)

b) What is μY? Explain your answer.

c) Find the value of k that makes this statement true:P(Yk)=0.38

Victoria parks her car at the same garage every time she goes to work. Because she stays at work for different lengths of time each day, the fee the parking garage charges on a randomly selected day is a random variable, G. The table gives the probability distribution of G.You can check that μG=\(14and σG=\)2.74.

In addition to the garage’s fee, the city charges a $3use tax each time Victoria parks her car. Let T=the total amount of money she pays on a randomly selected day.

a. Make a graph of the probability distribution of T. Describe its shape.

b. Find and interpret μT.

c. Calculate and interpret σT.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free