Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An English professor deducts 3 points from a student’s essay score for each nonword error and 2 points for each word error. Find the mean of the total score deductions T for a randomly selected essay

Short Answer

Expert verified

Randomly chosen essay, the mean of the total score deduction T isμ=8.3

Step by step solution

01

Given information

μX=2.1σX=1.136μY=1.0σY=1.0

X = quantity of nonword errors in an essay chosen at random

Y = quantity of word errors in an essay chosen at random

02

Calculations

μNW=3×μX=3×2.1=6.3μW=2×μY=2×1.0=2.0μ=μNW+μW=6.3+2.0=8.3

If every data point for non-word error is multiplied by 3, the distribution's centre is also multiplied by 3, so the measure of centre must be multiplied by 3, and the mean equals the measure of centre. Similarly, if every data point for word error is multiplied by 2, the distribution's centre is multiplied by 2, therefore the measure of centre is also multiplied by 2, and the mean is the measure of centre. The sum of the two random variables' means will be the mean of the two random variables. The total number of non-word and word errors is subtracted from the total average of 8.3 points.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In debt? Refer to Exercise 100.

a. Justify why D can be approximated by a normal distribution.

b. Use a normal distribution to estimate the probability that 30or more adults in the sample have more debt than savings.

Get on the boat! A small ferry runs every half hour from one side of a large river to the other. The probability distribution for the random variable Y= money collected on a randomly selected ferry trip is shown here. From Exercise 7, μY=$19.35.

(a) Find the median of Y.

(b) Compare the mean and median. Explain why this relationship makes sense based on the probability distribution.

Each entry in a table of random digits like Table Dhas probability $$ of being a 0 , and the digits are independent of one another. Each line of Table D contains 40 random

digits. The mean and standard deviation of the number of 0 s in a randomly selected line will be approximately

a. mean =0.1, standard deviation =0.05.

b. mean =0.1, standard deviation =0.1.

c. mean =4, standard deviation =0.05.

d. mean =4, standard deviation =1.90.

e. mean =4, standard deviation =3.60.

Airlines typically accept more reservations for a flight than the number of seats on the plane. Suppose that for a certain route, an airline accepts 40reservations on a plane that carries 38passengers. Based on experience, the probability distribution of Y=the number of passengers who actually show up for a randomly selected flight is given in the following table. You can check that μY=37.4andσY=1.24.

There is also a crew of two flight attendants and two pilots on each flight. Let X=the total number of people (passengers plus crew) on a randomly selected flight.

a. Make a graph of the probability distribution of X. Describe its shape.

b. Find and interpret role="math" μX.

c. Calculate and interpret σX.

Spoofing (4.2) To collect information such as passwords, online criminals use "spoofing" to direct Internet users to fraudulent websites. In one study of Internet fraud, students were warned about spoofing and then asked to log into their university account starting from the university's home page. In some cases, the log-in link led to the genuine dialog box. In others, the box looked genuine but, in fact, was linked to a different site that recorded the ID and password the student entered. The box that appeared for each student was determined at random. An alert student could detect the fraud by looking at the true Internet address displayed in the browser status bar, but most just entered their ID and password.

a. Is this an observational study or an experiment? Justify your answer.

b. What are the explanatory and response variables? Identify each variable as categorical or quantitative.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free