Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Typographical and spelling errors can be either “nonword errors” or “word errors.” A nonword error is not a real word, as when “the” is typed as “teh.” A word error is a real word, but not the right word, as when “lose” is typed as “loose.” When students are asked to write a 250-word essay (without spell-checking), the number of nonword errors X in a randomly selected essay has mean 2.1 and standard deviation 1.136. The number of word errors Y in the essay has mean 1.0 and standard deviation 1.0. Calculate and interpret the mean of the sum S = X + Y.

Short Answer

Expert verified

The Average mean value isμ=3.1

Step by step solution

01

Given information

The number of nonword errors X in a randomly selected essay has mean 2.1 and standard deviation 1.136

The number of word errors X in a randomly selected essay has mean 1.0 and standard deviation 1.0

μX=2.1σX=1.136μY=1.0σY=1.0

X = quantity of nonword errors in an essay chosen at random

Y= quantity of word errors in an essay chosen at random

02

Calculations

μ=μX+μY=2.1+1.0=3.1

There are two different random variables with two different means,μX=2.1and μY=1.0

as a result, the average of the two random numbers ,the total of their means will be the variable.

On average, there will be a total number of 3.1 errors

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Skee BallAna is a dedicated Skee Ball player (see photo in Exercise 4) who always rolls for the 50-point slot. The probability distribution of Ana’s score Xon a randomly selected roll of the ball is shown here. From Exercise 8, μX=23.8.

(a) Find the median of X.

(b) Compare the mean and median. Explain why this relationship makes sense based on the probability distribution.

Random digit dialing When a polling company calls a telephone number at random, there is only a 9% chance that the call reaches a live person and the survey is successfully completed. 10 Suppose the random digit dialing machine makes 15 calls. Let X= the number of calls that result in a completed survey.

a. Find the probability that more than 12 calls are not completed.

b. Calculate and interpret μXX.

c. Calculate and interpret σXσX.

Life insurance If four 21-year-old men are insured, the insurer’s average income is

V=X1+X2+X3+X44=0.25X1+0.25X2+0.25X3+0.25X4

where Xiis the income from insuring one man. Assuming that the amount of income earned on individual policies is independent, find the mean and standard deviation of V. (If you compare with the results of Exercise 57, you should see that averaging over more insured individuals reduces risk.)

Geometric or not? Determine whether each of the following scenarios describes a geometric setting. If so, define an appropriate geometric random variable.

a. Shuffle a standard deck of playing cards well. Then turn over one card at a time from the top of the deck until you get an ace.

b. Billy likes to play cornhole in his free time. On any toss, he has about a 20%chance of getting a bag into the hole. As a challenge one day, Billy decides to keep tossing bags until he gets one in the hole.

1-in-6 wins Alan decides to use a different strategy for the 1-in-6 wins game of Exercise 90¯. He keeps buying one 20 -ounce bottle of the soda at a time until he gets a winner.

a. Find the probability that he buys exactly 5 bottles.

b. Find the probability that he buys at most 6 bottles. Show your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free