Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Total gross profits G on a randomly selected day at Tim’s Toys follow a distribution that is approximately Normal with mean \(560 and standard deviation \)185. The cost of renting and maintaining the shop is $65 per day. Let P=profit on a randomly selected day, so P=G65. Describe the shape, center, and variability of the probability distribution of P.

Short Answer

Expert verified

P is a normal distribution with a mean of $495 and a standard deviation of $185.

Step by step solution

01

Given information

Given :

Total gross profits on a randomly selected day : G

It is approximately Normal with mean :$560

Standard deviation : $185.

The cost of renting and maintaining the shop is :$65

LetP=profit on a randomly selected day

P=G65.

02

Describing the shape, center, and variability of the probability distribution of P.

Shape :

Pis a normal distribution function because subtracting the constant from each data value has no effect on the shape of the distribution.

Center :

Pis a normal distribution function because when the constant is subtracted from each data value, the center of the distribution is also decreased by that constant value.

μp=μG65=56065=495

Spread :

Subtracting the constant from each data value has no effect on the distribution's spread; it remains unaffected.

σp=σg=185

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Lefties A total of 11%of students at a large high school are left-handed. A statistics teacher selects a random sample of 100 students and records L= the number of left-handed students in the sample.

a. Explain why L can be modeled by a binomial distribution even though the sample was selected without replacement.

b. Use a binomial distribution to estimate the probability that 15 or more students in the sample are left-handed.

Skee BallAna is a dedicated Skee Ball player (see photo in Exercise 4) who always rolls for the 50-point slot. The probability distribution of Ana’s score Xon a randomly selected roll of the ball is shown here. From Exercise 8, μX=23.8.

(a) Find the median of X.

(b) Compare the mean and median. Explain why this relationship makes sense based on the probability distribution.

Swim team Hanover High School has the best women's swimming team in the region. The 400meter freestyle relay team is undefeated this year. In the 400-meter freestyle relay, each swimmer swims 100meters. The times, in seconds, for the four swimmers this season are approximately Normally distributed with means and standard deviations as shown. Assuming that the swimmer's individual times are independent, find the probability that the total team time in the 400meter freestyle relay is less than 220seconds.follow the four step process.

SwimmerMeanStd.dev
Wendy55.22.8
Jill58.03.0
Carmen56.32.6
Latrice54.72.7

Kids and toys In an experiment on the behavior of young children, each subject is placed in an area with five toys. Past experiments have shown that the probability distribution of the number X of toys played with by a randomly selected subject is as follows:

Part (a). Write the event “child plays with 5 toys” in terms of X. Then find its probability.

Part (b). What’s the probability that a randomly selected subject plays with at most 3 toys?

How does your web browser get a file from the Internet? Your computer sends a request for the file to a web server, and the web server sends back a response. Let Y=the amount of time (in seconds) after the start of an hour at which a randomly selected request is received by a particular web server. The probability distribution of Ycan be modeled by a uniform density curve on the interval from 0to3600seconds. Define the random variable W=Y/60.

a. Explain what Wrepresents.

b. What probability distribution does Whave?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free