Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Class is over! Mr. Shrager does not always let his statistics class out on time. In fact, he

seems to end class according to his own “internal clock.” The density curve here models

the distribution of Y, the amount of time after class ends (in minutes) when Mr. Shrager

dismisses the class on a randomly selected day. (A negative value indicates he ended class

early.)

a) Find and interpret P(1Y1).

b) What is μY ? Explain your answer.

c)Find the value of k that makes this statement true: localid="1654015283453" P(Yk)=0.25

Short Answer

Expert verified

a)0.4or40%b)1.5c)2.75

Step by step solution

01

Step 1. Given information.

The density curve here models the distribution of Y, the amount of time after class ends (in minutes) when Mr. Shrager dismisses the class on a randomly selected day.

02

Step 2. Find and interpret.

The distribution is modeled by a uniform distribution on the interval from -1minutes to 4minutes.

The density curve of distribution is

f(x)=1b-a=14-(-1)=15=0.2

The probability

P(1Y1)=1-(-1)×15=1+1×15=25=0.40r40%

03

Step 3. Find the value of μY.

The uniform distribution is perfectly symmetric, which implies that the mean lies exactly in the middle of the distribution. The mean is then the value exactly in the middle of the boundaries of the interval on which the uniform distribution is defined and thus the mean can be determined as the average of the two boundaries.

μ=a+b2=-1+42=32=1.5

04

Step 4. Find the value of k in P(Y≥k)=0.25

P(YK)=0.25(4-k)15=0.254-k5=0.254-k=1.25-k=-2.75k=2.75

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Spell-checking Spell-checking software catches “nonword errors,” which result in a string of letters that is not a word, as when “the” is typed as “teh.” When undergraduates are asked to write a 250-word essay (without spell-checking), the number Y of nonword errors in a randomly selected essay has the following probability distribution

Part (a). Write the event “one nonword error” in terms of Y. Then find its probability.

Part (b). What’s the probability that a randomly selected essay has at least two nonword errors?

Get on the boat! Refer to Exercise 3. Make a histogram of the probability distribution. Describe its shape.

Lefties A total of 11%of students at a large high school are left-handed. A statistics teacher selects a random sample of 100 students and records L= the number of left-handed students in the sample.

a. Explain why L can be modeled by a binomial distribution even though the sample was selected without replacement.

b. Use a binomial distribution to estimate the probability that 15 or more students in the sample are left-handed.

Benford’s law Exercise 9 described how the first digits of numbers in legitimate records often follow a model known as Benford’s law. Call the first digit of a randomly chosen legitimate record X for short. The probability distribution for X is shown here (note that a first digit can’t be 0). From Exercise 9, E(X)=3.441. Find the standard deviation of X. Interpret this value.

Geometric or not? Determine whether each of the following scenarios describes a geometric setting. If so, define an appropriate geometric random variable.

a. Shuffle a standard deck of playing cards well. Then turn over one card at a time from the top of the deck until you get an ace.

b. Billy likes to play cornhole in his free time. On any toss, he has about a 20%chance of getting a bag into the hole. As a challenge one day, Billy decides to keep tossing bags until he gets one in the hole.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free