Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Benford’s law Exercise 9 described how the first digits of numbers in legitimate records often follow a model known as Benford’s law. Call the first digit of a randomly chosen legitimate record X for short. The probability distribution for X is shown here (note that a first digit can’t be 0). From Exercise 9, E(X)=3.441. Find the standard deviation of X. Interpret this value.

Short Answer

Expert verified

The standard deviation is 2.4618.

Step by step solution

01

Step 1. Given information.

The given information is:

02

Step 2. Find and interpret the standard deviation of X.

The given mean is 3.441.

The predicted value of the squared departure from the mean is known as the variance:

σ2=x-μ2Px=1-3.4412×0.301+2-3.4412×0.176+3-3.4412×0.125+4-3.4412×0.097+5-3.4412×0.079+6-3.4412×0.067+7-3.4412×0.058+8-3.4412×0.051+9-3.4412×0.046=6.060519

The standard deviation is:

σ=σ2=6.0605192.4618

We can see that on an average the first digit will vary from a mean of 3.441 by 2.4618.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Life insurance A life insurance company sells a term insurance policy to 21-year-old males that pays \(100,000 if the insured dies within the next 5 years. The probability that a randomly chosen male will die each year can be found in mortality tables. The company collects a premium of \)250 each year as payment for the insurance. The amount Y that the company earns on a randomly selected policy of this type is \(250 per year, less the \)100,000 that it must pay if the insured dies. Here is the probability distribution of Y:

(a) Explain why the company suffers a loss of $98,750 on such a policy if a client dies at age 25.

(b) Calculate the expected value of Y. Explain what this result means for the insurance company.

(c) Calculate the standard deviation of Y. Explain what this result means for the insurance company.

Red light! Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55%chance

that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let Y= the number of times that the light is red. Make a graph of the probability distribution of Y . Describe its shape.

During the winter months, the temperatures at the Starneses’ Colorado cabin can stay well below freezing (32°For0°C)for weeks at a time. To prevent the pipes from freezing, Mrs. Starnes sets the thermostat at 50°F.She also buys a digital thermometer that records the indoor temperature each night at midnight. Unfortunately, the thermometer is programmed to measure the temperature in degrees Celsius. Based on several years’ worth of data, the temperature Tin the cabin at midnight on a randomly selected night can be modeled by a Normal distribution with mean 8.5°Cand standard deviation 2.25°C. Let Y=the temperature in the cabin at midnight on a randomly selected night in degrees Fahrenheit (recall thatF=(9/5)C+32).

a. Find the mean of Y.

b. Calculate and interpret the standard deviation of Y.

c. Find the probability that the midnight temperature in the cabin is less than 40°F.

Housing in San José How do rented housing units differ from units occupied by their owners? Here are the distributions of the number of rooms for owner-occupied units and renter-occupied units in San José, California:

Let X= the number of rooms in a randomly selected owner-occupied unit and Y = the number of rooms in a randomly chosen renter-occupied unit.

(a) Here are histograms comparing the probability distributions of X and Y. Describe any differences you observe.

(b) Find the expected number of rooms for both types of housing unit. Explain why this difference makes sense.

(c) The standard deviations of the two random variables are σX=1.640and σY=1.308. Explain why this difference makes sense.

Take a spin Refer to Exercise 83. Calculate and interpret P(X7)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free