Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cranky mower To start her old lawn mower, Rita has to pull a cord and hope for some luck. On any particular pull, the mower has a 20%chance of starting.

a. Find the probability that it takes her exactly 3 pulls to start the mower.

b. Find the probability that it takes her more than 6 pulls to start the mower.

Short Answer

Expert verified

(a)Thus, the required probability is 0.128

(b)Thus, the required probability is 0.24

Step by step solution

01

Part (a) Step 1: Given Information

Probability of success (p)=20%=0.20

Formula used:

The formula to compute the geometric distribution is:

P(X=x)=(1-p)x-1p

02

Part (a) Step 2: Simplificaiton

Consider, X be the random variable that follows the geometric distribution.

P(X=3)=(1-0.20){3-1}(0.20)=0.128

Thus, the required probability is 0.128.

03

Part (b) Step 1: Given information

Probability of success(p)=20percent

04

Part (b)  Step 2: Calculation

The probability that it will take more than 6 pulls can be calculated as:

P(X>6)=1-P(X6)=1-[P(X=1)+P(X=2)+.+P(X=6)]=1-[0.22+0.17+0.13+0.10+0.08+0.06]=0.24

Thus, the required probability is 0.24

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Life insurance A life insurance company sells a term insurance policy to 21-year-old males that pays \(100,000 if the insured dies within the next 5 years. The probability that a randomly chosen male will die each year can be found in mortality tables. The company collects a premium of \)250 each year as payment for the insurance. The amount Y that the company earns on a randomly selected policy of this type is \(250 per year, less the \)100,000 that it must pay if the insured dies. Here is the probability distribution of Y:

(a) Explain why the company suffers a loss of $98,750 on such a policy if a client dies at age 25.

(b) Calculate the expected value of Y. Explain what this result means for the insurance company.

(c) Calculate the standard deviation of Y. Explain what this result means for the insurance company.

Ms. Hall gave her class a 10-question multiple-choice quiz.

Let X=the number of questions that a randomly selected student in the class answered correctly. The computer output gives information about the probability distribution of X. To determine each student’s grade on the quiz (out of 100), Ms. Hall will multiply his or her number of correct answers by 5and then add 50.Let G=the grade of a randomly chosen student in the class.

Easy quiz

a. Find the median of G.

b. Find the interquartile range (IQR) of G.

Large Counts condition To use a Normal distribution to approximate binomial probabilities, why do we require that both npand n(1-p) be a t least 10?

Housing in San José How do rented housing units differ from units occupied by their owners? Here are the distributions of the number of rooms for owner-occupied units and renter-occupied units in San José, California:

Let X= the number of rooms in a randomly selected owner-occupied unit and Y = the number of rooms in a randomly chosen renter-occupied unit.

(a) Here are histograms comparing the probability distributions of X and Y. Describe any differences you observe.

(b) Find the expected number of rooms for both types of housing unit. Explain why this difference makes sense.

(c) The standard deviations of the two random variables are σX=1.640and σY=1.308. Explain why this difference makes sense.

Total gross profits G on a randomly selected day at Tim’s Toys follow a distribution that is approximately Normal with mean \(560 and standard deviation \)185. The cost of renting and maintaining the shop is $65 per day. Let P=profit on a randomly selected day, so P=G65. Describe the shape, center, and variability of the probability distribution of P.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free