Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 5: R5.5 - Review Exercises (page 356)

2Drive to exercise : The two-way table summarizes the responses of 120 people to a survey in which they were asked, “Do you exercise for at least 30 minutes four or more times per week?” and “What kind of vehicle do you drive?”

ExerciseSedanSUVTruck
Yes251512
No202424

Suppose one person from this sample is randomly selected.

a. Find the probability that the person drives an SUV.

b. Find the probability that the person drives a sedan or exercises for at least 30 minutes four or more times per week.

c. Find the probability that the person does not drive a truck, given that she or he exercises for at least 30 minutes four or more times per week.

Short Answer

Expert verified

(a) Probability that the person drives an SUV is 0.325.

(b)The probability that the person drives a sedan or exercises for at least 30 minutes four or more times per week is 0.6.

(c)The probability that the person does not drive a truck, given that she or he exercises for at least 30 minutes four or more times per week is 0.33.

Step by step solution

01

Part (a) - Step 1 : Given Information

We are given three different vehicles and if a person exercises or not . We need to find if the person drives an SUV .

ExerciseSedanSUVTruck
Yes25
1512
No202424
02

Part (a) - Step 2 : Explanation

We need to find the total and divide favorable outcome by total outcomes in order to achieve the probability .

ExerciseSedanSUVTruckTotal
Yes2515
1252
No20242468
Total453936120

So, probability (person drives an SUV ) =39120

=0.325

03

Part (b) - Step 1 : Given Information 

We are given three different vehicles and if a person exercises or not . We need to find the probability that the person drives a sedan or exercises for at least 30 minutes four or more times per week.

04

Part (b) - Step 2 : Explanation

We need to add probability of both the cases .

Probability (person drives a sedan or exercises for at least 30 minutes four or more times per week)=Probability (person drives a sedan) +Probability (sedan in total ) -Probability (yes in exercise)

Required probability=45120+52120-25120=72120=0.6

05

Part (c) - Step 1 : Given Information 

We are given different vehicles and if a person exercises or not. We need to find the probability that the person does not drive a truck, given that she or he exercises for at least 30 minutes four or more times per week .

06

Part (c) - Step 2 : Explanation 

Required Probability=25120+15120=40120=0.33

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Due to a hit A very good professional baseball player gets a hit about 35% of the time

over an entire season. After the player failed to hit safely in six straight at-bats, a TV

As one commentator said, “He is due for a hit.” Explain why the commentator is wrong.

Genetics There are many married couples in which the husband and wife both carry a gene for cystic fibrosis but don’t have the disease themselves. Suppose we select one of these couples at random. According to the laws of genetics, the probability that their first child will develop cystic fibrosis is 0.25.

a. Interpret this probability as a long-run relative frequency.

b. If researchers randomly select 4such couples, is one of these couples guaranteed to have a first child who develops cystic fibrosis? Explain your answer.

Crawl before you walk (At what age do babies learn to crawl? Does it take

longer to learn in the winter, when babies are often bundled in clothes that restrict their

movement? Perhaps there might even be an association between babies’ crawling age and

the average temperature during the month they first try to crawl (around 6months after

birth). Data were collected from parents who brought their babies to the University of

Denver Infant Study Center to participate in one of a number of studies. Parents reported

the birth month and the age at which their child was first able to creep or crawl a distance

of 4feet within one minute. Information was obtained on 414infants208boysand206girls. Crawling age is given in weeks, and average temperature (in degrees Fahrenheit) is

given for the month that is 6months after the birth month.

a. Make an appropriate graph to display the relationship between average temperature and

average crawling age. Describe what you see.

Some computer output from a least-squares regression analysis of the data is shown.

b. What is the equation of the least-squares regression line that describes the relationship

between average temperature and average crawling age? Define any variables that you

use.

c. Interpret the slope of the regression line.

d. Can we conclude that warmer temperatures 6months after babies are born causes them

to crawl sooner? Justify your answer.

Which of the following is a correct way to perform the simulation?

a. Let integers from 1to34represent making a free throw and 35to50represent missing a free throw. Generate 50random integers from1to50. Count the number

of made free throws. Repeat this process many times.

b. Let integers from 1to34represent making a free throw and 35to50represent missing a free throw. Generate 50 random integers from 1 to 50 with no repeats

allowed. Count the number of made free throws. Repeat this process many times.

c. Let integers from1to56represent making a free throw and 57to100represent missing a free throw. Generate 50 random integers from1to100.Count the number of made free throws. Repeat this process many times.

d. Let integers from localid="1653986588937" 1to56represent making a free throw and localid="1653986593808" 57to100represent missing a free throw. Generate 50 random integers from localid="1653986598680" 1to100with no repeats allowed. Count the number of made free throws. Repeat this process many times.

e. None of the above is correct.

The partially complete table that follows shows the distribution of scores on the AP®

Statistics exam for a class of students.

Select a student from this class at random. If the student earned a score of 3 or higher

on the AP® Statistics exam, what is the probability that the student scored a 5?

a.0.150b.0.214c.0.300d.0.428e.0.700
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free