Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a class, there are 18 girls and 14 boys. If the teacher selects two students at random to attend a party with the principal, what is the probability that the two students are the same sex?

a. 0.49

b. 0.50

c. 0.51

d. 0.52

e. 0.53

Short Answer

Expert verified

The probability is0.49

Step by step solution

01

Given information

Number of girls =18

Number of boys=14

02

Calculation

The probability of two students of the same gender being chosen can be calculated as follows:

P(Same-sex)=P(Two girls)+P(Two boys)

=1832×1731×1432×1331=306992+182992=0.49

The required probability is 0.49

Therefore, the correct option is(a)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

2Drive to exercise : The two-way table summarizes the responses of 120 people to a survey in which they were asked, “Do you exercise for at least 30 minutes four or more times per week?” and “What kind of vehicle do you drive?”

ExerciseSedanSUVTruck
Yes251512
No202424

Suppose one person from this sample is randomly selected.

a. Find the probability that the person drives an SUV.

b. Find the probability that the person drives a sedan or exercises for at least 30 minutes four or more times per week.

c. Find the probability that the person does not drive a truck, given that she or he exercises for at least 30 minutes four or more times per week.

Butter side down Refer to the preceding exercise. Maria decides to test this

probability and drops 10 pieces of toast from a 2.5-foot table. Only 4of them land butter

side down. Maria wants to perform a simulation to estimate the probability that 4or

fewer pieces of toast out of 10would land butter side down if the researchers’ 0.81

probability value is correct.

a. Describe how you would use a table of random digits to perform the simulation.

b. Perform 3trials of the simulation using the random digits given. Copy the digits onto

your paper and mark directly on or above them so that someone can follow what you

did.

29077
14863
61683
47052
62224
51025
95052
90908
73592
75186
87136
95761
27102
56027
55892
33063
41842
81868

c. The dotplot displays the results of 50 simulated trials of dropping 10pieces of toast.

Is there convincing evidence that the researchers’ 0.81probability value is incorrect?

Explain your answer.

The most common bet in craps is the “pass line.” A pass line bettor wins immediately if either a 7or an11comes up on the first roll. This is called a natural. What is the probability that a natural does not occur?

a. 2/36

b.6/36

c.8/36

d. 16/36

e. 28/36

Teachers and college degrees Select an adult at random. Define events D: person has earned a college degree, and T: person’s career is teaching. Rank the following probabilities from smallest to largest. Justify your answer.

P(D)P(T)P(DT)P(TD)

Mac or PC? A recent census at a major university revealed that 60% of its students mainly used Macs. The rest mainly used PCs. At the time of the census, 67% of the school’s students were undergraduates. The rest were graduate students. In the census, 23% of respondents were graduate students and used a Mac as their main computer. Suppose we select a student at random from among those who were part of the census and learn that the person mainly uses a Mac. Find the probability that the person is a graduate student.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free