Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Late flights An airline reports that 85% of its flights arrive on time. To find the

probability that a random sample of 4 of this airline’s flights into LaGuardia Airport in New York City on the same night all arrive on time, can we multiply (0.85)(0.85)(0.85)(0.85)? Why or why not?

Short Answer

Expert verified

No, because the provided events cannot be considered independent events

Step by step solution

01

Given information

P(Flight arrives on time)=85%=0.85
P(All flights are on time)=0.5220

02

Explanation

The probability of flights arriving on time is not independent, which means that if one flight is delayed, another flight may also be delayed as a result of the first flight's delay. Because the events are not self-contained. As a result, the results are incorrect because they were calculated using the multiplication rule, which is only used in the case of independent events.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Liar, liar! Sometimes police use a lie detector test to help determine whether a suspect is

telling the truth. A lie detector test isn’t foolproof—sometimes it suggests that a person is

lying when he or she is actually telling the truth (a “false positive”). Other times, the test

says that the suspect is being truthful when he or she is actually lying (a “false negative”).

For one brand of lie detector, the probability of a false positive is 0.08.

a. Explain what this probability means.

b. Which is a more serious error in this case: a false positive or a false negative? Justify

your answer.

Mystery box Ms. Tyson keeps a Mystery Box in her classroom. If a student meets expectations for behavior, she or he is allowed to draw a slip of paper without looking. The slips are all of equal size, are well mixed, and have the name of a prize written on them. One of the “prizes”—extra homework—isn’t very desirable! Here is the probability model for the prizes a student can win:

a. Explain why this is a valid probability model.

b. Find the probability that a student does not win extra homework.

c. What’s the probability that a student wins candy or a homework pass?

Tossing coins Imagine tossing a fair coin 3times.

a. Give a probability model for this chance process.

b. Define event B as getting more heads than tails. Find P(B).

Reading the paper In a large business hotel, 40% of guests read the Los Angeles Times. Only 25% read the Wall Street Journal. Five percent of guests read both papers. Suppose we select a hotel guest at random and record which of the two papers the person reads, if either. What’s the probability that the person reads the Los Angeles Times or the Wall Street Journal?

a. Make a Venn diagram to display the outcomes of this chance process using events L:reads the Los Angeles Times and W: reads the Wall Street Journal.

b. Find PLCW.

Which one of the following is true about the events “Owner has a Chevy” and

“Owner’s truck has four-wheel drive”?

a. These two events are mutually exclusive and independent.

b. These two events are mutually exclusive, but not independent.

c. These two events are not mutually exclusive, but they are independent.

d. These two events are neither mutually exclusive nor independent.

e. These two events are mutually exclusive, but we do not have enough information to determine if they are independent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free