Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Merry and bright? A string of Christmas lights contains 20 lights. The

lights are wired in series so that if any light fails, the whole string will go dark. Each light has probability 0.98 of working for a 3-year period. The lights fail independently of each other. Find the probability that the string of lights will remain bright for 3 years.

Short Answer

Expert verified

The required probability is0.6676

Step by step solution

01

Given information

Given that,

Probability of success (p)=0.98

The failure of light is unrelated to the failure of other lights.

02

Calculation

The probability that the string of lights will remain lit for three years is calculated as follows:

P(Lightswillbebrightfor20years)=(0.98)20 =0.6676

Therefore, the required probability is0.6676

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Brushing teeth, wasting water? A recent study reported that fewer than half of young adults turn off the water while brushing their teeth. Is the same true for teenagers? To find out, a group of statistics students asked an SRS of 60students at their school if they usually brush with the water off. In the sample, 27students said "Yes." The dotplot shows the results of taking 200SRSS of 60students from a population in which the true proportion who brush with the water off is 0.50.

a. Explain why the sample result (27of the 60students said "Yes") does not give convincing evidence that fewer than half of the school's students brush their teeth with the water off.

b. Suppose instead that 18of the 60students in the class's sample had said "Yes." Explain why this result would give convincing evidence that fewer than 50%of the school's students brush their teeth with the water off.

Dogs and cats In one large city, 40%of all households own a dog, 32% own a cat, and 18% own both. Suppose we randomly select a household. Whatโ€™s the probability that the household owns a dog or a cat?

Does the new hire use drugs? Many employers require prospective employees to

take a drug test. A positive result on this test suggests that the prospective employee uses

illegal drugs. However, not all people who test positive use illegal drugs. The test result

could be a false positive. A negative test result could be a false negative if the person

really does use illegal drugs. Suppose that 4%of prospective employees use drugs and

that the drug test has a false positive rate of 5%and a false negative rate of10%.

Imagine choosing a prospective employee at random.

a. Draw a tree diagram to model this chance process.

b. Find the probability that the drug test result is positive.

c. If the prospective employeeโ€™s drug test result is positive, find the probability that she

or he uses illegal drugs.

Lucky penny? Harris Interactive reported that 33%of U.S. adults believe that

finding and picking up a penny is good luck. Assuming that responses from different

individuals are independent, what is the probability of randomly selecting 10U.S. adults

and finding at least 1person who believes that finding and picking up a penny is good

luck?

BMI (2.2, 5.2, 5.3) Your body mass index (BMI) is your weight in kilograms divided by

the square of your height in meters. Online BMI calculators allow you to enter weight in

pounds and height in inches. High BMI is a common but controversial indicator of being

overweight or obese. A study by the National Center for Health Statistics found that the

BMI of American young women (ages 20 to 29) is approximately Normally distributed

with mean 26.8 and standard deviation 7.4.

27

a. People with BMI less than 18.5 are often classed as โ€œunderweight.โ€ What percent of

young women are underweight by this criterion?

b. Suppose we select two American young women in this age group at random. Find the

probability that at least one of them is classified as underweight.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free