Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Rolling dice Suppose you roll two fair, six-sided dice—one red and one green. Are the events “sum is 8” and “green die shows a 4” independent? Justify your answer. (See Figure 5.2 on page 314 for the sample space of this chance process.)

Short Answer

Expert verified

No, events "sum is 8 " and "green die shows a 4 " are not independent.

Step by step solution

01

Step 1:Given information

Two fair, six sided dice are rolled-one red and one green.

Two events:

"sum is 8"

And

"green die shows a 4"

02

Step 2:Calculation

Two events are independent, if the probability of occurrence of one event does not affect the probability of occurrence of other event.

Let

S8: sum is 8

G4: green die shows a 44

We know that

Green die shows a4

That means

For the sum to be 8, red needs to show a 4.

In this case, the number of favorable outcomes is 1and number of possible outcomes is6

The probability is calculated by dividing the number of favourable outcomes by the total number of possible possibilities.

P(S8G4)=Number of favorable outcomesNumber of possible outcomes=160.1667

Now,

The possible combinations to make 8:

(2,6),(3,5),(4,4),(5,3),(6,2)

In this case, since there are five possible combinations to make 8 .

Thus,

The number of favorable outcomes is 5and number of possible outcomes is 36

P(S8)=5360.1368

We have

P(S8G4)0.1368

And

P(S8)0.1667

Both probabilities are not identical.

Thus,

They are not independent.

.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A basketball player claims to make 47%of her shots from the field. We want to simulate the player taking sets of 10shots, assuming that her claim is true.

To simulate the number of makes in 10shot attempts, you would perform the simulation as follows:

a. Use 10 random one-digit numbers, where 0-4are a make and 5-9are a miss.

b. Use 10random two-digit numbers, where 00-46are a make and 47-99are a miss.

c. Use 10random two-digit numbers, where 00-47are a make and 48-99are a miss.

d. Use 47random one-digit numbers, where 0is a make and 1-9are a miss.

e. Use 47random two-digit numbers, where 00-46are a make and 47-99are a miss.

Household size In government data, a household consists of all occupants of a dwelling unit. Choose an American household at random and count the number of people it contains. Here is the assignment of probabilities for the outcome. The probability of finding 3people in a household is the same as the probability of finding 4people.

a. What probability should replace “?” in the table? Why?

b. Find the probability that the chosen household contains more than 2people.

Education among young adults Choose a young adult (aged 25to 29) at random. The probability is 0.13that the person chosen did not complete high school, 0.29that the person has a high school diploma but no further education, and 0.30that the person has at least a bachelor’s degree.

a. What must be the probability that a randomly chosen young adult has some education beyond high school but does not have a bachelor’s degree? Why?

b. Find the probability that the young adult completed high school. Which probability rule did you use to find the answer?

c. Find the probability that the young adult has further education beyond high school. Which probability rule did you use to find the answer?

Get rich A survey of 4826 randomly selected young adults (aged 19to25) asked, “What do you think are the chances you will have much more than a middle-class income at age 30?” The two-way table summarizes the responses.

Choose a survey respondent at random. Define events G: a good chance, M: male, and N: almost no chance.

a. Find P(G|M). Interpret this value in context.

b. Given that the chosen survey respondent didn’t say “almost no chance,” what’s the probability that this person is female? Write your answer as a probability statement using correct symbols for the events.

Treating low bone density Fractures of the spine are common and serious

among women with advanced osteoporosis (low mineral density in the bones). Can taking

strontium ranelate help? A large medical trial was conducted to investigate this question.

Researchers recruited 1649women with osteoporosis who had previously had at least one

fracture for an experiment. The women were assigned to take either strontium ranelate or a

placebo each day. All the women were taking calcium supplements and receiving standard

medical care. One response variable was the number of new fractures over 3years.

a. Describe a completely randomized design for this experiment.

b. Explain why it is important to keep the calcium supplements and medical care the same

for all the women in the experiment.

c. The women who took strontium ranelate had statistically significantly fewer new

fractures, on average, than the women who took a placebo over a 3year period. Explain

what this means to someone who knows little statistics.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free