Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is this your card? A standard deck of playing cards (with jokers removed) consists of 52 cards in four suits—clubs, diamonds, hearts, and spades. Each suit has 13 cards, with denominations ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, and king. The jacks, queens, and kings are referred to as “face cards.” Imagine that we shuffle the deck thoroughly and deal one card. The two-way table summarizes the sample space for this chance process based on whether or not the card is a face card and whether or not the card is a heart.

Type of card

Face cardNon-Face cardTotal
Heart3
10
13
Non-Heart9
30
39
Total12
40
52

Are the events “heart” and “face card” independent? Justify your answer.

Short Answer

Expert verified

Events “heart” and “face card” independent

Step by step solution

01

Given Information

We are given information of cards and a two-way table summarizes the sample space for this chance process based on whether or not the card is a face card and whether or not the card is a heart.

We need to find out are the events “heart” and “face card” independent .

02

Explanation

Two events are independent if probability of one event does not affect probability of another event.


Face Cards Non-Face CardsTotal
Heart3
10
13
Non-Heart9
30
39
Total12
40
52

Probability of face card in deck of card=P(Face card)=role="math" localid="1653922848957" No.offavourableoutcomesNo.ofpossibleoutcomes=1252=313

Probability of heart in deck of card= P(heart)=No.offavourableoutcomeno.oftotaloutcome=1352

Probability of face card and heart=P(face card and heart)=352

According to definition of conditional probability:

P(Face card | Heart)=P(Facecardandheart)P(Heart)=3521352=313

For event to be independent P(A|B)=P(A)

From above probabilities calculated by us we see that : P(Face card)= P(Face card | Heart) = 313

Hence, events “heart” and “face card” independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Butter side down Refer to the preceding exercise. Maria decides to test this

probability and drops 10 pieces of toast from a 2.5-foot table. Only 4of them land butter

side down. Maria wants to perform a simulation to estimate the probability that 4or

fewer pieces of toast out of 10would land butter side down if the researchers’ 0.81

probability value is correct.

a. Describe how you would use a table of random digits to perform the simulation.

b. Perform 3trials of the simulation using the random digits given. Copy the digits onto

your paper and mark directly on or above them so that someone can follow what you

did.

29077
14863
61683
47052
62224
51025
95052
90908
73592
75186
87136
95761
27102
56027
55892
33063
41842
81868

c. The dotplot displays the results of 50 simulated trials of dropping 10pieces of toast.

Is there convincing evidence that the researchers’ 0.81probability value is incorrect?

Explain your answer.

Double fault!A professional tennis player claims to get 90%of her second serves in. In a recent match, the player missed 5of her first 20second serves. Is this a surprising result if the player’s claim is true? Assume that the player has a 0.10probability of missing each second serve. We want to carry out a simulation to estimate the probability that she would miss 5or more of her first 20second serves.

a. Describe how to use a random number generator to perform one trial of the simulation. The dot plot displays the number of second serves missed by the player out of the first 20second serves in simulated matches.

b. Explain what the dot at 6represents.

c. Use the results of the simulation to estimate the probability that the player would miss 5or more of her first 20second serves in a match.

d. Is there convincing evidence that the player misses more than 10%of her second serves? Explain your answer.

Which one of the following is true about the events “Owner has a Chevy” and

“Owner’s truck has four-wheel drive”?

a. These two events are mutually exclusive and independent.

b. These two events are mutually exclusive, but not independent.

c. These two events are not mutually exclusive, but they are independent.

d. These two events are neither mutually exclusive nor independent.

e. These two events are mutually exclusive, but we do not have enough information to determine if they are independent.

Notebook check Every 9weeks, Mr. Millar collects students' notebooks and checks their homework. He randomly selects 4different assignments to inspect for all of the students. Marino is one of the students in Mr. Millar's class. Marino completed 20homework assignments and did not complete 10assignments. He is surprised when Mr. Millar only selects 1assignment that he completed. Should he be surprised? To find out, we want to design a simulation to estimate the probability that Mr. Millar will randomly select 1or fewer of the homework assignments that Marino completed.

Get 30identical slips of paper. Write "N" on 10 of the slips and "C" on the remaining 20slips. Put the slips into a hat and mix well. Draw 1slip without looking to represent the first randomly selected homework assignment, and record whether Marino completed it. Put the slip back into the hat, mix again, and draw another slip representing the second randomly selected assignment. Record whether Marino completed this assignment. Repeat this process two more times for the third and fourth randomly selected homework assignments. Record the number out of the 4randomly selected homework assignments that Marino completed in this trial of the simulation. Perform many trials. Find the proportion of trials in which Mr. Millar randomly selects 1or fewer of the homework assignments that Marino completed.

Butter side down Researchers at Manchester Metropolitan University in England

determined that if a piece of toast is dropped from a2.5-foot-high table, the probability

that it lands butter side down is 0.81.

a. Explain what this probability means.

b. Suppose that the researchers dropped 4pieces of toast, and all of them landed butter

side down. Does that make it more likely that the next piece of toast will land with the

butter side up? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free