Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An unenlightened gambler

a. A gambler knows that red and black are equally likely to occur on each spin of a

roulette wheel. He observes that 5 consecutive reds have occurred and bets heavily on

black at the next spin. Asked why, he explains that “black is due.” Explain to the

gambler what is wrong with this reasoning.

b. After hearing you explain why red and black are still equally likely after 5reds on the

roulette wheel, the gambler moves to a card game. He is dealt 5straight red cards from

a standard deck with26red cards and 26black cards. He remembers what you said and

assumes that the next card dealt in the same hand is equally likely to be red or black.

Explain to the gambler what is wrong with this reasoning.

Short Answer

Expert verified

a) Each spin is independent, receiving red and black has the same probability even after you know five reds have occurred.

b)No, because five red cards have already been eliminated from the card deck, leaving the deck with more black than red cards.

Step by step solution

01

Part (a) Step 1: Given information

We have to tell what is wrong with this reasoning.

02

Part (a) Step 2: Explanation

Because each spin is independent, receiving red and black has the same probability even after you know five reds have occurred. As a result, red has a 50% probability of winning, and black has a 50% chance of winning.

03

Part (b) Step 1: Given information

We have to explain to the gambler what is wrong with this reasoning.

04

Part (b) Step 2: Explanation

No, because five red cards have already been eliminated from the card deck, leaving the deck with more black than red cards.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a class, there are 18 girls and 14 boys. If the teacher selects two students at random

to attend a party with the principal, what is the probability that the two students are the

same sex?

a.0.49b.0.50c.0.51d.0.52e.0.53

Dogs and cats In one large city, 40%of all households own a dog, 32% own a cat, and 18% own both. Suppose we randomly select a household. What’s the probability that the household owns a dog or a cat?

Middle school values Researchers carried out a survey of fourth-, fifth-, and sixth-grade students in Michigan. Students were asked whether good grades, athletic ability, or being popular was most important to them. The two-way table summarizes the survey data.

Suppose we select one of these students at random. What’s the probability of each of the following?

a. The student is a sixth-grader or rated good grades as important.

b. The student is not a sixth-grader and did not rate good grades as important.

Random assignment Researchers recruited 20volunteers-8men and 12women-to take part in an experiment. They randomly assigned the subjects into two groups of 10people each. To their surprise, 6of the 8men were randomly assigned to the same treatment. Should they be surprised? We want to design a simulation to estimate the probability that a proper random assignment would result in 6or more of the 8men ending up in the same group.

Get 20identical slips of paper. Write "M" on 8of the slips and "W" on the remaining 12slips. Put the slips into a hat and mix well. Draw 10of the slips without looking and place into one pile representing Group 1. Place the other 10slips in a pile representing Group 2. Record the largest number of men in either of the two groups from this simulated random assignment. Repeat this process many, many times. Find the percent of trials in which 6or more men ended up in the same group.

Preparing for the GMAT A company that offers courses to prepare students for the Graduate Management Admission Test (GMAT) has collected the following information about its customers: 20%are undergraduate students in business, 15%are undergraduate students in other fields of study, and 60%are college graduates who are currently employed. Choose a customer at random.

a. What must be the probability that the customer is a college graduate who is not currently employed? Why?

b. Find the probability that the customer is currently an undergraduate. Which probability rule did you use to find the answer?

c. Find the probability that the customer is not an undergraduate business student. Which probability rule did you use to find the answer?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free