Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Foreign-language studyChoose a student in grades 9 to 12 at random and ask if he or she is studying a language other than English. Here is the distribution of results:

a. What’s the probability that the student is studying a language other than English?

b. What is the probability that a student is studying Spanish given that he or she is

studying some language other than English?

Short Answer

Expert verified

a. Probability for students is studying a language other than English is 0.41.

b. Probability that student is studying Spanish other than English is0.6341.

Step by step solution

01

Given Information

It is given that:

02

Probability for student is studying language other than English

As per complement rule: P(notA)=1-P(A)

From table:

Probability that student is studying none language other than English is P(none)=0.59

From complement rule,

P(other language)=1-P(none)=1-0.59=0.41

Probability that student is studying language other than English is0.41

03

Probability for the student studying some language other than English is Spanish.

From above part: P(other language)=0.41

We know that P(AB)=P(AandB)P(B)

Here, the probability of other language and Spanish language will be same as probability of Spanish language.

P(other language and Spanish)=P(Spanish)=0.26

As per conditional probability

P(Spanishother language)=P(otherlanguageandSpanish)P(otherlanguage)=0.260.410.6341

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Does the new hire use drugs? Many employers require prospective employees to

take a drug test. A positive result on this test suggests that the prospective employee uses

illegal drugs. However, not all people who test positive use illegal drugs. The test result

could be a false positive. A negative test result could be a false negative if the person

really does use illegal drugs. Suppose that 4%of prospective employees use drugs and

that the drug test has a false positive rate of 5%and a false negative rate of10%.

Imagine choosing a prospective employee at random.

a. Draw a tree diagram to model this chance process.

b. Find the probability that the drug test result is positive.

c. If the prospective employee’s drug test result is positive, find the probability that she

or he uses illegal drugs.

Superpowers A random sample of 415children from England and the United States who completed a survey in a recent year was selected. Each student’s country of origin was recorded along with which superpower they would most like to have: the ability to fly, ability to freeze time, invisibility, superstrength, or telepathy (ability to read minds). The data are summarized in the two-way table.

Suppose we randomly select one of these students. Define events E: England, T: telepathy,

and S: superstrength.

a. Find P(T|E). Interpret this value in context.

b. Given that the student did not choose superstrength, what’s the probability that this child is from England is ? Write your answer as a probability statement using correct symbols for the events.

Three machines—A, B, and C—are used to produce a large quantity of identical parts at

a factory. Machine A produces 60%of the parts, while Machines B and C produce

30%and 10%of the parts, respectively. Historical records indicate that 10%of the parts

produced by Machine A are defective, compared with 30%for Machine B, and 40%for

Machine C. Suppose we randomly select a part produced at the factory.

a. Find the probability that the part is defective.

b. If the part is inspected and found to be defective, what’s the probability that it was

produced by Machine B?

AARP, and Medicare (4.1) To find out what proportion of Americans support proposed

Medicare legislation to help pay medical costs, the AARP conducted a survey of their

members (people over age 50 who pay membership dues). One of the questions was:

“Even if this plan won’t affect you personally either way, do you think it should be passed

so that people with low incomes or people with high drug costs can be helped?” Of the

respondents, 75% answered “Yes.”

a. Describe how undercoverage might lead to bias in this study. Explain the likely

direction of the bias.

b. Describe how the wording of the question might lead to bias in this study. Explain the

likely direction of the bias.

Airport securityThe Transportation Security Administration (TSA) is responsible for airport safety. On some flights, TSA officers randomly select passengers for an extra security check prior to boarding. One such flight had 76passengers—12in first class and 64in coach class. Some passengers were surprised when none of the 10passengers chosen for screening were seated in first class. We want to perform a simulation to estimate the probability that no first-class passengers would be chosen in a truly random selection.

a. Describe how you would use a table of random digits to carry out this simulation.

b. Perform one trial of the simulation using the random digits that follow. Copy the digits onto your paper and mark directly on or above them so that someone can follow what you did.

c. In 15of the 100trials of the simulation, none of the 10passengers chosen was seated in first class. Does this result provide convincing evidence that the TSA officers did not carry out a truly random selection? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free