Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Union and intersection Suppose A and B are two events such that P (A)=0.3, P (B)=0.4, and

P (A∪B)=0.58. Find P (A∩B).

Short Answer

Expert verified

The P(AB)is0.12.

Step by step solution

01

Given Information

We are given the values of P (A)=0.3,P (B)=0.4, PAB=0.58and we have to find out the value of PAB.

02

Explanation

Apply the union rule of probability,

which states thatP(AB)=PA+PB-PAB

P(A)=0.3,P(B)=0.4,P(AB)=0.58.

Put these valuesinto union rules.

We getPAB=0.4+0.3-0.58=0.12

Hence, the value of the probability of intersection between A and B is0.12.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the probability that the person owns a Dodge or has four-wheel drive?

a.20/80b.20/125c.80/125d.90/125e.110/125

Reading the paper In a large business hotel, 40%of guests read the Los Angeles Times. Only read the Wall Street Journal. Five percent of guests read both papers. Suppose we select a hotel guest at random and record which of the two papers the person reads, if either. What’s the probability that the person reads the Los Angeles Times or the Wall Street Journal?

Does the new hire use drugs? Many employers require prospective employees to

take a drug test. A positive result on this test suggests that the prospective employee uses

illegal drugs. However, not all people who test positive use illegal drugs. The test result

could be a false positive. A negative test result could be a false negative if the person

really does use illegal drugs. Suppose that 4%of prospective employees use drugs and

that the drug test has a false positive rate of 5%and a false negative rate of10%.

Imagine choosing a prospective employee at random.

a. Draw a tree diagram to model this chance process.

b. Find the probability that the drug test result is positive.

c. If the prospective employee’s drug test result is positive, find the probability that she

or he uses illegal drugs.

Taking the train According to New Jersey Transit, the 8:00A.M.weekday train from Princeton to New York City has a 90%chance of arriving on time. To test this claim, an auditor chooses 6weekdays at random during a month to ride this train. The train arrives late on 2of those days. Does the auditor have convincing evidence that the company's claim is false? Describe how you would carry out a simulation to estimate the probability that a train with a 90%chance of arriving on time each day would be late on 2or more of 6days. Do not perform the simulation.

You read in a book about bridge that the probability that each of the four players is dealt exactly one ace is approximately 0.11. This means that

a. in every 100bridge deals, each player has 1ace exactly 11times.

b. in 1million bridge deals, the number of deals on which each player has 1ace will be exactly 110,000.

c. in a very large number of bridge deals, the percent of deals on which each player has 1ace will be very close to 11%.

d. in a very large number of bridge deals, the average number of aces in a hand will be very close to 0.11.

e. If each player gets an ace in only 2of the first 50deals, then each player should get an ace in more than 11%of the next 50deals.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free