Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reading the paper In a large business hotel, 40%of guests read the Los Angeles Times. Only read the Wall Street Journal. Five percent of guests read both papers. Suppose we select a hotel guest at random and record which of the two papers the person reads, if either. What’s the probability that the person reads the Los Angeles Times or the Wall Street Journal?

Short Answer

Expert verified

60percent of the time, the person will read one of the two newspapers.

Step by step solution

01

Given Information

We have to determine probability that the person reads the Los Angeles Times or the Wall Street Journal .

02

Simplification

The Los Angeles Times is read by 40%of the guests.
The Wall Street Journal is read by 25%of the guests.
Only 5%of the visitors read both newspapers.
If there are two events, rule of thumb for addition:

P(AB)=P(A)+P(B)P(AB)

Now,
The person's likelihood of reading the Los Angeles Times,
P(LAT)=40%=0.40

Probability that the person reads Wall Street Journal ,

  role="math" localid="1654013332190" P(WSJ)=25%=0.25

Probability that the person reads both the newspapers,

  P(LATWSJ)=5%=0.05

Then,

P(LATWSJ)=P(LAT)+P(WSJ)P(LATWSJ)P(LATWSJ)=0.40+0.250.05=0.60=60%

Therefore,
There is a 60%chance that the person reads the Los Angeles Times or the Wall Street Journal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Who eats breakfast?Students in an urban school were curious about how many children regularly eat breakfast. They conducted a survey, asking, “Do you eat breakfast on a regular basis?” All 595students in the school responded to the survey. The resulting data are shown in the two-way table.

Suppose we select a student from the school at random. Define event Fas getting a female student and event Bas getting a student who eats breakfast regularly.

a. Find P(BC)

b. Find P(FandBC). Interpret this value in context.

c. Find P(ForBC).

The partially completed table that follows shows the distribution of scores on the2016

AP® Statistics exam.

Suppose we randomly select a student who took this exam. What’s the probability that he

or she earned a score of at least3?

a.0.249

b.0.361

c.0.390

d.0.466

e.0.610

Ten percent of U.S. households contain 5or more people. You want to simulate choosing a household at random and recording “Yes” if it contains 5or more people. Which of these is a correct assignment of digits for this simulation?

a.Odd=Yes;Even=No

b.0=Yes;19=No

c.05=Yes;69=No

d.04=Yes;59=No

e. None of these

An athlete suspected of using steroids is given two tests that operate independently of each other. Test A has probability 0.9of being positive if steroids have been used. Test B has probability 0.8of being positive if steroids have been used. What is the probability that neither test is positive if the athlete has used steroids?

a. 0.08

b. 0.28

c. 0.02

d. 0.38

e. 0.72

Get rich A survey of 4826 randomly selected young adults (aged 19to25) asked, “What do you think are the chances you will have much more than a middle-class income at age 30?” The two-way table summarizes the responses.

Choose a survey respondent at random. Define events G: a good chance, M: male, and N: almost no chance.

a. Find P(G|M). Interpret this value in context.

b. Given that the chosen survey respondent didn’t say “almost no chance,” what’s the probability that this person is female? Write your answer as a probability statement using correct symbols for the events.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free