Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Liar, liar! Sometimes police use a lie detector test to help determine whether a suspect is

telling the truth. A lie detector test isn’t foolproof—sometimes it suggests that a person is

lying when he or she is actually telling the truth (a “false positive”). Other times, the test

says that the suspect is being truthful when he or she is actually lying (a “false negative”).

For one brand of lie detector, the probability of a false positive is 0.08.

a. Explain what this probability means.

b. Which is a more serious error in this case: a false positive or a false negative? Justify

your answer.

Short Answer

Expert verified

a) The probability of the mammogram's false-negative rate must be interpreted.

b) We predict that around of people who take a8%(or0.08) polygraph.

Step by step solution

01

Part (a) Step 1: Given information

We have to tell what this probability means.

02

Part (a) Step 2: Explanation

  • The probability of the mammogram's false-negative rate must be interpreted.
  • The test says that the suspect is being truthful
03

Part (b) Step 1: Given information

We have to tell which is a more serious error in this case

04

Part (b) Step 2: Explanation

  • We predict that around 8%(or0.08)of people who take a polygraph.
  • The truth will have the polygraph show that they lie.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is this your card? A standard deck of playing cards (with jokers removed) consists of 52 cards in four suits—clubs, diamonds, hearts, and spades. Each suit has 13 cards, with denominations ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, and king. The jacks, queens, and kings are referred to as “face cards.” Imagine that we shuffle the deck thoroughly and deal one card. The two-way table summarizes the sample space for this chance process based on whether or not the card is a face card and whether or not the card is a heart.

Type of card

Face cardNon-Face cardTotal
Heart3
10
13
Non-Heart9
30
39
Total12
40
52

Are the events “heart” and “face card” independent? Justify your answer.

Smartphone addiction? A media report claims that 50%of U.S. teens with smartphones feel addicted to their devices. A skeptical researcher believes that this figure is too high. She decides to test the claim by taking a random sample of 100U.S. teens who have smartphones. Only 40of the teens in the sample feel addicted to their devices. Does this result give convincing evidence that the media report’s 50%claim is too high? To find out, we want to perform a simulation to estimate the probability of getting 40or fewer teens who feel addicted to their devices in a random sample of size 100from a very large population of teens with smartphones in which 50% feel addicted to their devices.

Let 1= feels addicted and 2= doesn’t feel addicted. Use a random number generator to produce 100random integers from 1to 2. Record the number of 1’s in the simulated random sample. Repeat this process many, many times. Find the percent of trials on which the number of 1’s was40 or less.

The dotplot displays the number of made shots in 100simulated sets of 50free throw by someone with probability 0.56of making a free throw.

Which of the following is an appropriate statement about Wilt’s free-throw shooting

based on this dotplot?

a. If Wilt were still only a 56%shooter, the probability that he would make at least 34of his shots is about0.03.

b. If Wilt were still only a 56%shooter, the probability that he would make at least 34of his shots is about 0.97..

c. If Wilt is now shooting better than 56%, the probability that he would make at least 34of his shots is about 0.03.

d. If Wilt is now shooting better than56%, the probability that he would make at least 34of his shots is about0.97.

e. If Wilt were still only a 56%shooter, the probability that he would make at least 34of his shots is about 0.01.

Is this your card? A standard deck of playing cards (with jokers removed) consists of 52cards in four suits—clubs, diamonds, hearts, and spades. Each suit has 13cards, with denominations ace, 2,3,4,5,6,7,8,9,10,jack, queen, and king. The jacks, queens, and kings are referred to as “face cards.” Imagine that we shuffle the deck thoroughly and deal one card. Define events F: getting a face card and H: getting a heart. The two-way table summarizes the sample space for this chance process

a. Find P(HC).

b. Find P(HcandF). Interpret this value in context.

c. Find P(HcorF).

Suppose that a student is randomly selected from a large high school. The probability

that the student is a senior is 0.22. The probability that the student has a driver’s license

is 0.30. If the probability that the student is a senior or has a driver’s license is 0.36,

what is the probability that the student is a senior and has a driver’s license?

a.0.060b.0.066c.0.080d.0.140e.0.160
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free