Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Tossing coins Imagine tossing a fair coin 3times.

a. Give a probability model for this chance process.

b. Define event B as getting more heads than tails. Find P(B).

Short Answer

Expert verified

(a) There are total 8probability outcomes in the probablity model

(b) The probabilty P(B)of getting more heads than tails is1/2

Step by step solution

01

Part (a) STEP 1: Given information 

We have been given that a coin is tossed 3times.

02

Part (a) STEP 2: Explanation

In a single toss of a coin there are 2 conceivable results specifically Head (H) and Tail (T). So, by the basic rule of duplication, the full number of conceivable results in3tosses=(2×2×2)=2^3=8.

Sample space: (HHH,HTH,THH,TTH,HHT,HTT,THT,TTT)

03

Part (b) STEP 1: Given information

We have been given that a coin is tossed 3imes.

04

Part (b) STEP 2: Explanation 

P(B)=Probabilty of getting more heads than tails

P(B)=Total outcomes with 2or more heads /Total outcomes

Total outcomes with two or more heads =4

Total outcomes=8

P(B)=4/8=1/2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Taking the train According to New Jersey Transit, the 8:00A.M.weekday train from Princeton to New York City has a 90%chance of arriving on time. To test this claim, an auditor chooses 6weekdays at random during a month to ride this train. The train arrives late on 2of those days. Does the auditor have convincing evidence that the company's claim is false? Describe how you would carry out a simulation to estimate the probability that a train with a 90%chance of arriving on time each day would be late on 2or more of 6days. Do not perform the simulation.

If a player rolls a 2,3,or12, it is called craps. What is the probability of getting craps or an even sum on one roll of the dice?

a. 4/36

b. 18/36

c. 20/36

d. 22/36

e. 32/36

Scrabble In the game of Scrabble, each player begins by randomly selecting 7tiles from a bag containing 100tiles. There are 42vowels, 56consonants, and 2blank tiles in the bag. Cait chooses her 7tiles and is surprised to discover that all of them are vowels. We want to perform a simulation to determine the probability that a player will randomly select 7vowels.

a. Describe how you would use a table of random digits to carry out this simulation.

b. Perform one trial of the simulation using the random digits given. Copy the digits onto your paper and mark directly on or above them so that someone can follow what you did.

c. In 2of the 1000trials of the simulation, all 7tiles were vowels. Does this result give convincing evidence that the bag of tiles was not well mixed?

In an effort to find the source of an outbreak of food poisoning at a conference, a team of medical detectives carried out a study. They examined all 50 people who had food poisoning and a random sample of 200 people attending the conference who didn’t get food poisoning. The detectives found that 40% of the people with food poisoning went to a cocktail party on the second night of the conference, while only 10% of the people in the random sample attended the same party. Which of the following statements is appropriate for describing the 40% of people who went to the party? (Let F = got food poisoning and A = attended party.)

a. P(F|A) = 0.40

b. P(A|FC) = 0.40

c. P(F|AC) = 0.40

d. P(AC|F) = 0.40

e. P(A|F) = 0.40

Gender and political party In January2017, 52%of U.S. senators were Republicans and

the rest were Democrats or Independents. Twenty-one percent of the senators were

females, and 47%of the senators were male Republicans. Suppose we select one of these

senators at random. Define events R: is a Republican and M: is male.

a. Find P(R ∪ M). Interpret this value in context.

b. Consider the event that the randomly selected senator is a female Democrat or

Independent. Write this event in symbolic form and find its probability.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free