Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A total of 25repetitions of the simulation were performed. The number of makes in each set of 10simulated shots was recorded on the dotplot. What is the approximate probability that a 47%shooter makes 5or more shots in 10attempts?

a.5/10

b.3/10

c.12/25

d. 3/25

e.47/100

Short Answer

Expert verified

The correct answer is option c12/25

Step by step solution

01

Given Information

We have to find the approximate probability that a 47%shooter makes 5or more shots in 10attempt.

02

Explanation

We want to know how often it is that we will make 5or more shots, so we need to know how many times we will get 5or more.

We notice that 12times out of 25, we get a 5or higher.

So,12/25is the answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Waiting to park Do drivers take longer to leave their parking spaces when

someone is waiting? Researchers hung out in a parking lot and collected some data. The

graphs and numerical summaries display information about how long it took drivers to

exit their spaces.

a. Write a few sentences comparing these distributions.

b. Can we conclude that having someone waiting causes drivers to leave their spaces more

slowly? Why or why not?

Roulette An American roulette wheel has 38 slots with numbers 1through36,0,and 00, as shown in the figure. Of the numbered slots, 18are red, 18are black, and 2—the 0and 00—are green. When the wheel is spun, a metal ball is dropped onto the middle of the wheel. If the wheel is balanced, the ball is equally likely to settle in any of the numbered slots. Imagine spinning a fair wheel once. Define events B: ball lands in a black slot, and E: ball lands in an even-numbered slot. (Treat0and 00as even numbers.)

a. Make a two-way table that displays the sample space in terms of events Band E.

b. Find P(B)andP(E).

c. Describe the event “Band E” in words. Then find the probability of this event.

d. Explain why P(BorE)P(B)+P(E). Then use the general addition rule to compute P(BorE).

Suppose that a student is randomly selected from a large high school. The probability

that the student is a senior is 0.22. The probability that the student has a driver’s license

is 0.30. If the probability that the student is a senior or has a driver’s license is 0.36,

what is the probability that the student is a senior and has a driver’s license?

a.0.060b.0.066c.0.080d.0.140e.0.160

Smartphone addiction? A media report claims that 50%of U.S. teens with smartphones feel addicted to their devices. A skeptical researcher believes that this figure is too high. She decides to test the claim by taking a random sample of 100U.S. teens who have smartphones. Only 40of the teens in the sample feel addicted to their devices. Does this result give convincing evidence that the media report’s 50%claim is too high? To find out, we want to perform a simulation to estimate the probability of getting 40or fewer teens who feel addicted to their devices in a random sample of size 100from a very large population of teens with smartphones in which 50% feel addicted to their devices.

Let 1= feels addicted and 2= doesn’t feel addicted. Use a random number generator to produce 100random integers from 1to 2. Record the number of 1’s in the simulated random sample. Repeat this process many, many times. Find the percent of trials on which the number of 1’s was40 or less.

In an effort to find the source of an outbreak of food poisoning at a conference, a team of medical detectives carried out a study. They examined all 50 people who had food poisoning and a random sample of 200 people attending the conference who didn’t get food poisoning. The detectives found that 40% of the people with food poisoning went to a cocktail party on the second night of the conference, while only 10% of the people in the random sample attended the same party. Which of the following statements is appropriate for describing the 40% of people who went to the party? (Let F = got food poisoning and A = attended party.)

a. P(F|A) = 0.40

b. P(A|FC) = 0.40

c. P(F|AC) = 0.40

d. P(AC|F) = 0.40

e. P(A|F) = 0.40

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free