Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A basketball player claims to make 47%of her shots from the field. We want to simulate the player taking sets of 10shots, assuming that her claim is true.

To simulate the number of makes in 10shot attempts, you would perform the simulation as follows:

a. Use 10 random one-digit numbers, where 0-4are a make and 5-9are a miss.

b. Use 10random two-digit numbers, where 00-46are a make and 47-99are a miss.

c. Use 10random two-digit numbers, where 00-47are a make and 48-99are a miss.

d. Use 47random one-digit numbers, where 0is a make and 1-9are a miss.

e. Use 47random two-digit numbers, where 00-46are a make and 47-99are a miss.

Short Answer

Expert verified

The correct answer is option (b) Use 10random two-digit numbers, where 00-46are a make and 47-99are a miss.

Step by step solution

01

Given Information

We have been given a basketball player claims to make 47%of her shots from the field.

02

Explanation

Since in option (b)00-46are a make, i.e, 47out of 100are a make, resulting in a probability of 47%

So, option (b) Use 10random two-digit numbers, where 00-46are a make and 47-99are a miss.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is this your card? A standard deck of playing cards (with jokers removed) consists of 52cards in four suits—clubs, diamonds, hearts, and spades. Each suit has 13cards, with denominations ace, 2,3,4,5,6,7,8,9,10,jack, queen, and king. The jacks, queens, and kings are referred to as “face cards.” Imagine that we shuffle the deck thoroughly and deal one card. Define events F: getting a face card and H: getting a heart. The two-way table summarizes the sample space for this chance process

a. Find P(HC).

b. Find P(HcandF). Interpret this value in context.

c. Find P(HcorF).

Waiting to park Do drivers take longer to leave their parking spaces when

someone is waiting? Researchers hung out in a parking lot and collected some data. The

graphs and numerical summaries display information about how long it took drivers to

exit their spaces.

a. Write a few sentences comparing these distributions.

b. Can we conclude that having someone waiting causes drivers to leave their spaces more

slowly? Why or why not?

Genetics There are many married couples in which the husband and wife both carry a gene for cystic fibrosis but don’t have the disease themselves. Suppose we select one of these couples at random. According to the laws of genetics, the probability that their first child will develop cystic fibrosis is 0.25.

a. Interpret this probability as a long-run relative frequency.

b. If researchers randomly select 4such couples, is one of these couples guaranteed to have a first child who develops cystic fibrosis? Explain your answer.

The security system in a house has two units that set off an alarm when motion is

detected. Neither one is entirely reliable, but one or both always go off when there is

motion anywhere in the house. Suppose that for motion in a certain location, the

probability that detector A goes off and detector B does not go off is 0.25, and the

probability that detector A does not go off is 0.35. What is the probability that detector

B goes off?

a.0.1b.0.35c.0.4d.0.65e.0.75

Double fault!A professional tennis player claims to get 90%of her second serves in. In a recent match, the player missed 5of her first 20second serves. Is this a surprising result if the player’s claim is true? Assume that the player has a 0.10probability of missing each second serve. We want to carry out a simulation to estimate the probability that she would miss 5or more of her first 20second serves.

a. Describe how to use a random number generator to perform one trial of the simulation. The dot plot displays the number of second serves missed by the player out of the first 20second serves in simulated matches.

b. Explain what the dot at 6represents.

c. Use the results of the simulation to estimate the probability that the player would miss 5or more of her first 20second serves in a match.

d. Is there convincing evidence that the player misses more than 10%of her second serves? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free